請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3819
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 董成淵(Chen-Yuan Dong) | |
dc.contributor.author | Ruei-Yu Wang | en |
dc.contributor.author | 王瑞瑜 | zh_TW |
dc.date.accessioned | 2021-05-13T08:37:08Z | - |
dc.date.available | 2019-08-31 | |
dc.date.available | 2021-05-13T08:37:08Z | - |
dc.date.copyright | 2016-08-31 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-02 | |
dc.identifier.citation | 參考資料
[1] Comparison of lecithin: sphingomyelin ratio, fluorescence polarization, and phosphatidylglycerol in the amniotic fluid in the prediction of respiratory distress syndrome. Hamilton PR, Hauschild D, Broekhuizen FF, Beck RM. Obstet Gynecol. 1984 Jan;63(1):52-6. [2] Comparison between clinical and radiological classification of infants with the respiratory distress syndrome (RDS). P. O. Kero, E. O. Mäkinen. Eur J Pediatr. 1979 April 3; 130(4): 271–278. [3] A Survey of Lung Segmentation Techniques. Manali Laxman Joshi,Prof. Prajakta. P. Nalgirkar. International Journal of Advanced Research in Computer Science and Software Engineering;Volume 5, Issue 3, March 2015:914-919. [4] Design and Implementation of Efficient Information Retrieval Algorithm for Chest X-Ray Images. M. Shoaib,Usamn Ghani, Shazia,Kalsoom k. & Syed Khaldoon K. Journal of American Science 2009;5(4):43-48. [5] Detection of Rib Borders on X-ray Chest Radiographs. Rui Moreira1, Ana Maria Mendon¸ca1, and Aur´elio Campilho1. Image Analysis and Recognition Volume 3212 of the series Lecture Notes in Computer Science pp 108-115. [6] Pattern Recognition of Chest X-Ray Images, Jun-Ichiro Toriwaki, Yasuhito Suenaga, Toshio Negoro, Teruo FuKuMura. Computer graphics and image processing (1973) 2, 252-271. [7] Design and Implementation of Efficient Information Retrieval Algorithm for Chest X-Ray Images. M. Shoaib,Usamn Ghani, Shazia,Kalsoom k. & Syed Khaldoon K. Journal of American Science 2009;5(4):43-48. [8] 新生兒肺透明膜病86例X線診斷及臨床分析,張凱鐘、朱洪寶。中華實用醫藥雜志,2005-9-21。 [9] 新生儿肺透明膜病50例影像分析。鄧憲華。中華現代影像學雜誌, 2007年4月26日。 [10] Automated Detection of Lung Diseases in Chest X-Rays. Sameer Antani, PhD. April 2015 Technical Report to the LHNCBC Board of Scientific Counselors. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3819 | - |
dc.description.abstract | 目前新生兒呼吸窘迫症候群 (respiratory distress syndrome, 縮寫為 RDS)為早 產兒死亡率最高的幾個病因之一,其症狀為在出生後六小時內逐漸現呼吸困難、皮膚青紫化,呼氣性呻吟吸動作不協調等在 48小時內死亡率較高。 然而因症狀並非出生後即顯現,是漸進加重此需要事先經由輔助檢查評估是否需要進行臨床治療。目前使用的輔助檢測法包含羊水查、泡沫試驗羊水磷脂甘油測定、血液檢查及 CXR(Chest X-ray, 即胸腔 X光片 )檢查等,其 檢查等,其 中除了 CXR外的各試驗皆有具體數值去定義 RDS的嚴重程度,如泡沫試驗即 計算搖盪後的泡沫產生數、羊水及血液檢查可出具體化合物濃度,唯 CXR的嚴重程度為定性而非量分析,目前臺大醫院所使用四級法別依 a. 肺部網狀小顆粒浸潤與否 b. 肺部血管充與否 c. 橫膈與 心肺消失與否 來進 行分級。因此本研究嘗試針對臨床上出現呼吸窘迫象的新生兒之胸腔 X光片 進行數值化,以期可建立比較客觀的分級方法。
醫學影像辨識為一件頗複雜的工作, 尤其涉及病變而出現不規則性與一般影像處理相比有 更多的限制。而RDS現象的新生兒,在其胸腔 X光 片上會出現白化、邊緣模糊的象,讓諸多行處理胸腔肺部擷取方法無使用,且因為新生兒的體型關係成象時射線強度較年人低骨骼及肌肉等軟組織的對比較小,必須要另想方法才能取出肺部區域。 我們使用針對肋骨而設計的線偵測遮罩標定出區域後 ,再由邊緣跟隨 的方式走出大略胸腔範圍。此外以脊椎與肋骨相連特性,利用閥值尋找脊椎的位置。綜合以上方法最後可大略取出肺部區域,對所選塊計算其平均及標準差。最後 建立數值模型,排序其 數值, 與醫師分級之一致性可達 86%,說明了此檢測法量化之可能 。 | zh_TW |
dc.description.abstract | Respiratory distress syndrome is one of the main cause of death for premature baby. Its symptoms include difficulty breathing, purple skin, expiratory moan and uncoordinated breathing. It’s mortality rate is highest in the first 48 hours. However, the symptoms are not shown immediately after birth. Some auxiliary examination is required for early detection of RDS. The auxiliary examination includes amniotic fluid examination, bubble test, PG examination, blood examination and chest x-ray(CXR) examination etc. All auxiliary examinations exclude CXR examination have specific numbers for classification, as the number of bubbles in bubble test, the molecule density in PG, amniotic and blood examination. CXR is a qualify but not quantify examination. The four grades classification standard used by NTUH are as follow: 1. If frosted glass pattern appear 2. If vessels are congested. 3. if the boundary between heart and lung, diaphragm and lung disappears. This research tries to numerically describe the RDS level of CXR, hoping to find a quantitative method for CXR classification.
Medical image processing is not an easy work, especially for the case involving irregularity disease area. For RDS new born, there will be white out and boundary blurring effect on CXR. It makes most of the methods used for segmentation for adult CXR invalid. New approach must be developed. We use filter that are sensitive to ribs and use edge following technique to find the approximate region of thoracic cage. And by use of the property that spine nodes will be connected to ribs, to segment out the spine region by threshold. By mixing all approaches above, the lung area can be roughly segment out. After calculating the average and variation of selected regions, we see a correspondence (87% correctness) between the numerically grading and the qualitative grading which decided by doctors. It is concluded that it is possible to quantify RDS CXR by image processing. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T08:37:08Z (GMT). No. of bitstreams: 1 ntu-105-R03222067-1.pdf: 3540116 bytes, checksum: eb9b41f2720d93121c5fb24651d68209 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 目錄
第一章 導論……………………………………………..……………………………1 1.1 概述………………………………………………………………………..…1 1.2 研究動機及目的…………………………………………………………..…1 1.3 章節提要…………………………………………………………………..…2 第二章 背景…………………………………………………………………………..3 2.1 X 射線造影簡介…………………………………...………………………...3 2.2 胸腔構造簡介………………………………………..………………………4 2.3 醫療用格式DICOM…………………………………………………………6 2.4 影像處理……………………………………………………..………………6 第三章 問題分析…………………………………………………..…………………7 3.1 數位影像處理……………………………………………………….………7 3.2 脊椎骨……………………………………………………………………….7 3.3 肺部及胸腔區域…………………………………………………………….7 3.4 肋骨………………………………………………………………………….9 第四章 影像擷取實作………………………………………………………………10 4.1 概念簡介…………………………...………………………………………10 4.2 直方圖均衡化……………………………………………………………...11 4.3 肋骨………………………………………………………………………...12 4.4 脊椎骨……………………………………………………………………...13 4.5 胸腔………………………………………………………………………...16 4.6 肺部………………………………………………………………………...18 4.7 心臟………………………………………………………………………...19 第五章 數值計算及結果討論………………………………………………………21 5.1 計算方法……………………………………………………...……………21 5.2 計算結果………………………………………………...…………………21 5.3 修正………………………………………………………………………...23 5.4 數值化後之分級…………………………………………………………...24 5.5 結果與討論………………………………………………………………...31 5.6 未來發展及改進方向……………………………………………………...32 參考資料…………………………………………………………………..…………33 | |
dc.language.iso | zh-TW | |
dc.title | 由影像處理方法量化新生兒呼吸道窘迫症候群之胸腔X光片嚴重度 | zh_TW |
dc.title | Quantify Respiratory distress syndrome Chest X-ray Severity by Image Processing | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 曹伯年(Po-Nien Tsao) | |
dc.contributor.oralexamcommittee | 張顏暉(Yuan-Huei Chang),陳永芳(Yang-Fang Chen) | |
dc.subject.keyword | 影像處理,胸腔X光片,新生兒呼吸道窘迫症候群, | zh_TW |
dc.subject.keyword | Image processing,Chest X-ray,Respiratory distress syndrome, | en |
dc.relation.page | 34 | |
dc.identifier.doi | 10.6342/NTU201601497 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2016-08-02 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf | 3.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。