請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38178
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊榮輝(Rong-Huay Juang) | |
dc.contributor.author | Kuang-Ching Tseng | en |
dc.contributor.author | 曾光靖 | zh_TW |
dc.date.accessioned | 2021-06-13T16:27:30Z | - |
dc.date.available | 2005-07-22 | |
dc.date.copyright | 2005-07-22 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-14 | |
dc.identifier.citation | 吳其真 (1998) 甘藷澱粉磷解脢之生化及免疫學研究 碩士論文 國立台灣大學 台北
吳建興 (2000) 裂殖性酵母菌中植物螯合素合成脢的分離與性質研究 博士論文 國立台灣大學 台北 周宜旻 (2005) 甘藷塊根澱粉磷解脢之蛋白質交互作用 碩士論文 國立台灣大學 台北 林珮君 (2002) 甘藷塊根澱粉磷解脢在澱粉代謝之角色探討 碩士論文 國立台灣大學 台北 莊榮輝 (1985) 水稻蔗糖合成脢之研究 博士論文 國立台灣大學 台北 許仁弘 (2003) 水稻白化苗澱粉磷解脢之生化學與分子生物學研究 博士論文 國立台灣大學 台北 陳翰民 (1997) 甘藷澱粉磷解脢構造與功能之研究 博士論文 國立台灣大學 台北 楊光華 (2005) 甘藷塊根澱粉磷解脢激脢之純化與性質分析 博士論文 國立台灣大學 台北 Brisson N, Giroux H, Zollinger M, Camirand A, Simard C (1989) Maturation and subcellular compartmentation of potato starch phosphorylase. 1:559-566 Chen HM, Chang SC, Wu CC, Cuo TS, Wu JS, Juang RH (2002) Regulation of the catalytic behavior of L-form starch phosphorylase from sweet potato roots by proteolysis. Physiologia plantarum 114:506-515 Ginsburg A, Szczepanowski RH, Ruvinov SB, Nosworthy NJ, Sondej M, Umland TC, Peterkofsky A (2000) Conformational stability changes of the amino terminal domain of enzyme I of the Escherichia colu phosphoenolpyruvate:sugar phosphotransferase system produced by substituting alanine or glutamate for the active-site histidine 189:Implications for phosphorylation effects. Protein Science 9:1085-1094 Gold AM, Johnson RM, Sanchez GR (1971) Kinetic mechanism of potato phosphorylase. J Biol Chem 246:3444-3450 Hardin SC, Huber SC (2004) Proteasome activity and the post-translational control of sucrose synthase stability in maize leaves. Plant Physiology and Biochemistry 42:197-208 Hardin SC, Tang GQ, Scholz A, Holtgraewe D, Winter H, Huber SC (2003) Phosphorylation of sucrose synthase at serine 170:occurrence and possible role as a signal for proteolysis. The Plant Journal 35:588-603 Huber CS, Hardin SC (2004) Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels. Current Opinion in Plant Biology 7:318-322 Jhonson LN, Bradford D (1990) Glycogen phosphorylase. J Biol Chem 265:2409-2412 Liu TTY, Shannon JC (1981) A nonaqueous procedure for isolating starch granules with associated metabolites from maize endosperm. Plant Physiol 67:518-524 Matheson NK, Richardson RH (1976) Starch phosphorylase enzymes in developing and germinating pea seeds. Phytochemistry 15:887-892 Matheson NK, Richardson RH (1978) Kinetic properties of two starch phosphorylase from pea seeds. Phytochemistry 17:195-200 Moreno S, Tandecarz JS (1992) Size-activity relationships in phosphorylase of potato tubers after storage. Plant Physiol Biochem 30:459-465 Moreno S, Tandecarz JS (1994) Limited proteolysis by papain alters primer requirement of potato phosphorylase. Plant Physiol Biochem 32:641-648 Moreno S, Tandecarz JS (1996) Analysis of primer independent phosphorylase activity in potato plants:high levels of activity in sink organs and sucrose-dependent activity in cultured stem explants. Cell Mol Biol 42:637-643 Mori H, Tanizawa K, Fukui T (1991) Potato tuber type H phosphorylase isozyme. Molecular cloning, nucleotide sequence, and expression of a full-length cDNA in Escherichia coli. J Biol Chem 266:18446-18453 Mori H, Tanizawa K, Fukui T (1993) A chimeric alpha-glucan phosphorylase of plant type L and H isozymes. J Biol Chem 268:5574-5581 Mu HH, Yu Y, Wasserman BP, Carman GM (2001) Purification and characterization of the maize amyloplast stromal 112-kDa starch phosphorylase. Arch Biochem Biophys 388:155-164 Nakano K, Fukui T (1986) The complete amino acid sequence of potato a-glucan phosphorylase. J Biol Chem 261:8230-8236 Philip Cohen (2002) The origins of protein phosphorylation. Nature Cell Biology 4:E127-E130 Preiss J, Biggs ML, Greenberg E (1967) The effect of magnesium ion concentration on the pH optimum of the spinach leaf alkaline fructose diphosphatase. J Biol Chem 242:2292-2294 Schneider EM, Becker JU, Volkmann D (1981) Biochemical properties of potato phosphorylase change with its intracellular localization as revealed by immunological methods. Planta 151:124-134 Steup M (1988) Starch degradation. In J. Preiss, ed, The Biochemistry of Plants 14:255-296 Tetlow IJ, Morell MK, Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. Journal of Experimental Botany 55:2131-2145 Tetlow IJ, Wait R, Lu Z, Akkasaeng R, Bowsher CG, Esposito S, Kosar-Hashemi B, Morell MK, Emes MJ (2003) Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 16: 694-708 Trevelyan, W.E., Mann, P.F.E., and Harison, J.S. (1952) The phosphorylasereaction equilibrium constant:principles and preliminary survey. Arch.Biochem. Biophys.39:419-439 Tsai CY, Nelson OE (1968) PhosphorylaseⅠandⅡof maize endosperm. Plant Physiol 43:103-112 Yang XJ (2005) Multisite protein modification and intramolecular signaling. Oncogene 24:1653-1662 Zeeman SC, Thorneycroft D, Schupp N, Chapple A, Weck M, Dunstan H, Haldimann P, Bechtold N, Smith AM, Smith SM (2004) Plastidial alpha-glucan phosphorylase is not required for starch degradation in arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiol 135:849-858 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38178 | - |
dc.description.abstract | 轉譯後修飾 (post-translational modifications) 乃生物細胞調控蛋白質功能的主要方式。目前已知甘藷塊根L型澱粉磷解脢 (L-SP) 會受到磷酸化 (楊光華,2005) 及蛋白裂解修飾 (陳翰民,1997),而本論文即探討這兩種修飾對L-SP活性之影響。磷酸化修飾並未明顯影響L-SP需醣引子合成澱粉及磷解澱粉之活性,但是可加速L-SP中央L78降解的速率。所以磷酸化修飾可能是加速降解L78的訊號,而並非是影響L-SP催化效率的調控方式。L78降解後,由需醣引子合成澱粉活性之動力學結果發現,L-SP對可溶性澱粉的親和力增加,對Glc-1-P親和力則小幅下降,但未顯著影響L-SP催化能力。過去本實驗室認為L78的降解可能是將L-SP的活性,自合成澱粉方向轉變為磷解澱粉之角色的調控方式,但由本論文觀察L-SP磷解澱粉之動力學結果,發現L-SP對可溶性澱粉的親和力依然提升,對磷酸親和力不變,也不會明顯影響L-SP磷解澱粉的活性。
另外,探討L-SP不需醣引子合成直鏈醣活性時,發現磷酸化修飾及L78移除會明顯降低其催化效率,令我們認為L-SP催化不需醣引子合成直鏈醣的活性區,與催化需醣引子合成澱粉及磷解澱粉的活性區不同。同時,我們推測L78可能就是催化不需醣引子合成直鏈醣的活性區。 | zh_TW |
dc.description.abstract | Post-translational modification is a major mechanism regulating protein functions in the eukaryote. We have found that L-SP in sweet potato roots can be modified by phosphorylation and proteolytic cleavage at specific sites. In this study, we tried to explore the effects of these two modifications on L-SP. According to the kinetic studies, phosphorylation of L-SP has no effect on its catalytic behavior either in primer-dependent synthetic or phosphorolytic activity, but increases the sensitivity for the proteolysis of L78 on L-SP. Enzyme kinetic studies of L-SP in primer-dependent synthesis indicates that the affinity toward soluble starch increases after the proteolytic modification of L78. However, the affinity toward Glc-1-P decreases, and shows no obvious changes in its catalytic efficiency in terms of kcat/Km. According to our previous studies, we expected that the proteolysis on L78 may switch the catalytic direction of L-SP from starch synthesis to starch phosphorolysis. Nevertheless, results in this study showed that the affinity to soluble starch increases after the proteolytic modification of L78, whereas the affinity toward Pi and the catalytic efficiency of phosphorylation keep unchanged.
When we looked forward into the primer-independent synthetic activity of L-SP, we found that phosphorylation and proteolytic modification would decrease the catalytic efficiency. This phenomenon might be resulted from the different active sites for catalyzing primer-dependent and primer-independent synthetic reaction. Thus, we supposed L78 is the catalytic site of primer-independent synthesis process. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:27:30Z (GMT). No. of bitstreams: 1 ntu-94-R92b47202-1.pdf: 13597083 bytes, checksum: 3a23b240fb09f21f9eeec95e962815df (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目錄 I
中文摘要 III ABSTRACT IV 第一章 緒論 1 1.1 轉譯後修飾對酵素調控的意義 1 1.1.1 磷酸化修飾 1 1.1.2 蛋白質裂解修飾 3 1.2 澱粉磷解脢 4 1.2.1 澱粉磷解脢的研究歷史 4 1.2.2 澱粉磷解脢的調控機制 6 1.2.3 研究動機 7 第二章 材料與方法 13 2.1 一般分析法 13 2.1.1 蛋白質定量法 13 2.1.2 甘藷塊根澱粉磷解脢L-SP合成澱粉活性分析法 (添加醣引子) 13 2.1.3 甘藷塊根澱粉磷解脢L-SP合成澱粉活性分析法 (不添加醣引子) 15 2.1.4 甘藷塊根L型澱粉磷解脢磷解澱粉活性分析法 (連續式耦合反應) 15 2.2 管柱色層分析法 16 2.2.1 管柱色層層析法之基本操作 16 2.2.2 膠體前處理與保存 18 2.2.3 膠體過濾法 18 2.2.4 離子交換法 19 2.2.5 疏水性層析法 20 2.3 電泳檢定法 21 2.3.1 原態膠體電泳 21 2.3.2 SDS膠體電泳 24 2.3.3 製備式電泳與電泳溶離 26 2.3.4 膠體染色法 27 2.3.5 膠片乾燥法及護貝 30 2.3.6 蛋白質電泳轉印法 31 2.3.7 酵素免疫染色法 32 2.4 甘藷塊根L型澱粉磷解脢製備法 34 2.4.1 酵素粗抽取及硫酸銨分劃 34 2.4.2 完整的澱粉磷解脢純化法 35 2.4.3 磷酸化修飾之澱粉磷解脢製備法 36 2.4.4 中央斷裂型澱粉磷解脢製備法 37 第三章 結果與討論 39 3.1 不同修飾態之L型澱粉磷解脢之製備 39 3.1.1 製備完整的L型澱粉磷解脢 39 3.1.2 製備磷酸化L型澱粉磷解脢 39 3.1.3 製備L78降解的L型澱粉磷解脢 39 3.2 磷酸化修飾不會影響L型澱粉磷解脢活性表現 43 3.2.1 合成澱粉活性之探討 43 3.2.2 澱粉磷解方向活性之探討 47 3.3 磷酸化修飾為加速L型澱粉磷解脢L78降解的訊號 51 3.4 移除L78提升L型澱粉磷解脢對可溶性澱粉的親和力 53 3.4.1 合成澱粉之活性 53 3.4.2 磷解澱粉方向之活性 57 第四章 結論 59 4.1 磷酸化修飾及L78降解不影響L-SP需醣引子合成澱粉及磷解澱粉之活性 59 4.2 L78可能參與L-SP不需醣引子合成直鏈醣之催化反應 60 4.3 未來展望 60 參考文獻 66 | |
dc.language.iso | zh-TW | |
dc.title | 磷酸化修飾對甘藷塊根 L 型澱粉磷解脢之影響 | zh_TW |
dc.title | The Effects of Phosphorylation of L-form Starch Phosphorylase from Sweet Potato Roots | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林耀輝(Yaw-Huei Lin),林棋財(Chi-Tsai Lin),楊健志(Chien-Chih Yang),陳翰民(Han-Min Chen) | |
dc.subject.keyword | 澱粉磷解脢,磷酸化,蛋白裂解修飾, | zh_TW |
dc.subject.keyword | starch phosphorylase,phosphorylation,proteolysis, | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-14 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 13.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。