Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38174
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭
dc.contributor.authorYen-Fu Chenen
dc.contributor.author陳彥甫zh_TW
dc.date.accessioned2021-06-13T16:27:26Z-
dc.date.available2005-12-31
dc.date.copyright2005-07-19
dc.date.issued2005
dc.date.submitted2005-07-14
dc.identifier.citationREFERENCES
[1] Agrawal, R. and Srikant, R., Fast algorithms for mining association rules, In Proc. of Int. Conf. Very Large Data Bases (VLDB'94), Sept. 1994, pp. 487-499.
[2] Alter, O., Brown, P. and Botstein, D., Singular value decomposition for genome-wide expression data processing and modeling, In Proc. of the National Academy of Sciences of the United States of America, Vol. 97, 2000, pp. 10101–10106.
[3] Alter, O., Brown, P. and Botstein, D., Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms, In Proc. of the National Academy of Sciences of the United States of America, Vol. 100, 2003, pp. 3351–3356.
[4] Amaratunga, D. and Cabrera, J., Exploration and analysis of DNA microarray and protein array data, Wiley series in probability and statistics, New Jersey USA, 2004.
[5] Bar-Joseph, Z., Analyzing time series gene expression data, Bioinformatics, Vol. 20, 2004, pp. 2493–2503.
[6] Becquet, C., Blachon, S., Jeudy, B., Boulicaut, J.-F. and Gandrillon, O. Strong-association-rule mining for large-scale gene expression data analysis: a case study on human sage data, Genome Biology, Vol. 3, 2002, pp. 0067.1-0067.16.
[7] Chang, C.C., The study of an ordered minimal perfect hashing scheme, Communications of the ACM, Vol. 27, 1984, pp. 384–387.
[8] Cong, G., Tung, A.K.H., Xu, X., Pan, F., and Yang, J., FARMER: finding interesting rule groups in microarray datasets, In Proc. of ACM SIGMOD, 2004, pp. 143-154.
[9] Creighton, C. and Hanash,S, Mining gene expression database for association rules, Bioinformatics, Vol. 19, 2003, pp. 79–86.
[10] Eisen, M., Spellman, P., Brown, P. and Botstein, D., Cluster analysis and display of genome-wide expression patterns, In Proc. of the National Academy of Sciences of the United States of America, Vol. 95, 1998, pp. 14863–14868.
[11] Garg, A.K. and Gotlieb, C.C., Order-preserving key transformations, ACM Transaction on Database Systems, Vol. 11, 1986, pp. 213-234.
[12] Husmeier, D., Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks, Bioinformatics, Vol. 19, 2003, pp. 2271–2282.
[13] Ji, L. and Tan, K.L., Mining gene expression data for positive and negative co-regulated gene clusters, Bioinformatics, Vol. 20, 2004, pp. 2711–2718.
[14] Ji, L. and Tan, K.L., Identifying time-lagged gene clusters using gene expression data, Bioinformatics, Vol. 21, 2005, pp. 509–516.
[15] Kathleen H. Rubins, Lisa E. Hensley, Peter B. Jahrling, Adeline R. Whitney, Thomas W. Geisbert, John W. Huggins, Art Owen, James W. LeDuc, Patrick O. Brown, and David A. Relman, The host response to smallpox: analysis of the gene expression program in peripheral blood cells in a nonhuman primate model, In Proc. of the National Academy of Sciences of the United States of America, Vol. 101, No. 42, 2004, pp. 15190–15195.
[16] Kim, S., Imoto, S. and Miyano, S., Inferring gene networks from time series microarray data using dynamic Bayesian networks, Briefings in Bioinformatics, Vol. 4, 2003, pp. 228–235.
[17] Lee, T., Rinaldi, N., Robert, F., Odom, D., Bar-Joseph, Z., Gerber, G., Hannett, N., Harbison, C., Thompson, C., Simon, I., et al., Transcriptional regulatory networks in Saccharomyces cerevisiae, Science, Vol. 798, 2002, pp. 799–804.
[18] Ong, I., Glasner, J. and Page, D., Modelling regulatory pathways in E.coli from time series expression profiles, Bioinformatics, Vol. 18(Suppl. 1), 2002, pp. 241–248.
[19] Perrin, B.E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J. and D’Alche-Buc, F., Gene networks inference using dynamic Bayesian networks, Bioinformatics, Vol. 19, 2003, pp. II138–II148.
[20] Schliep, A., Schonhuth, A. and Steinhoff, C., Using hidden Markov models to analyze gene expression time course data, Bioinformatics, Vol. 19, 2003, pp. I264–I272.
[21] Whitfield, M.L., Sherlock, G., Saldanha, A.J., Murray, J.I., Ball, C.A., Alexander, K.E., Matese, J.C., Perou, C.M., Hurt, M.M., Brown, P.O. and Botstein, D., Identification of genes periodically expressed in the human cell cycle and their expression in tumors, Molecular Biology of the Cell, Vol. 13, 2002, pp. 1977–2000.
[22] Yu, J., Smith, A., Wang, P.P., Hartemink, A.J. and Jarvis, E.D., Advances to Bayesian network inference for generating causal networks from observational biological data, Bioinformatics, Vol. 20, 2004, pp. 3594–3603.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38174-
dc.description.abstract基因表現之時間序列資料可以用來表現基因調控事件間之因果關係。然而,現有的分析方法如基因網絡模型建構僅採用單一樣本的基因表現時間序列資料來建立基因網絡,其結果之準確率仍有待提升。此外,基因網絡模型建構受限於高計算時間的關係,只能包含小規模的基因數目。因此,我們提出一個有效率的資料探勘方法,用於分析重複樣本之基因表現時間序列資料。我們所提出的方法可以從大規模的基因表現資料中找出重要的調控樣式。所找出的調控樣式可用來產生基因調控規則,而這些規則可以進一步組合成複雜的基因調控網絡。我們所提出的基因調控網絡可以表現出動態基因調控事件間的因果關係及其調控的強度。
首先我們利用模擬的資料來進行所提出方法的效能評估。此外,我們也將此方法應用於實際的人類細胞週期基因表現資料。結果顯示,我們所提出的方法不僅具有效率及擴充性,並且可以提供大規模基因表現資料中更精細且準確的基因調控資訊。
zh_TW
dc.description.abstractTime series gene expression data can be exploited to reveal causal genetic events. However, current methods of gene network modeling focus on one sample of the dataset, which may suffer from a low recovery rate. Moreover, gene network modeling emphasizes small set of genes because of high computation time. Our proposed approach efficiently mines gene regulatory patterns from large scale of replicate time series datasets. The patterns can be used to generate gene regulatory networks. The regulatory networks reveal the relationships of dynamic causal regulatory events and their regulatory intensities.
We first examine our proposed approach with simulated data for performance evaluation. In addition, we also apply our proposed approach to human cell cycle data. The results show that our proposed method is not only efficient and scalable but reveals complex regulatory information among large scale of genes.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:27:26Z (GMT). No. of bitstreams: 1
ntu-94-R92725031-1.pdf: 632297 bytes, checksum: 30e4b50fb171888b2b42346422ce6c3c (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of Contents
Table of Contents i
List of Figures iii
List of Tables iv
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE SURVEY 4
2.1 Microarray Datasets 4
2.2 Pattern Recognition Level 5
2.3 Network Levels 5
2.3.1 Mining static gene expression experiment data 6
2.3.2 Dynamic Bayesian networks 7
2.4 Discussion 9
CHAPTER 3 OUR PROPOSED APPROACH 11
3.1 Preprocessing Gene Expression Data 11
3.2 Datasets 11
3.3 Finding Frequent Segments from a Single Gene of Many Samples 12
3.4 Finding Frequent Patterns 16
3.4.1 Segment dataset 17
3.4.2 Hash function 18
3.4.3 Occurrence lattice and the hash-based algorithm 18
3.4.4 Multi-level hashing 20
3.5 Constructing Gene Regulatory Networks 24
3.5.1 Generating association rules from frequent patterns 24
3.5.2 Constructing networks from association rules 24
CHAPTER 4 PERFORMANCE EVALUATION AND EXPERIMENTAL RESULTS 28
4.1 Performance Evaluation 28
4.1.1 Simulative regulatory networks 29
4.1.2 Performance evaluation 30
4.2 Real Data Experiments 33
4.2.1 Data sets 33
4.2.2 Gene groups 34
4.2.3 Pattern groups 36
4.2.4 Regulatory networks 41
CHAPTER 5 CONCLUDING REMARKS 44
REFERENCES 46
dc.language.isoen
dc.subject基因調控網絡zh_TW
dc.subject序列性資料探勘zh_TW
dc.subject基因表現資料分析zh_TW
dc.subjectsequential data miningen
dc.subjectgene expression data analysisen
dc.subjectgene regulatory networksen
dc.title由基因表現之時間序列資料探勘基因調控網絡zh_TW
dc.titleMining Time Series Gene Expression Data for Gene regulatory Networksen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉敦仁,沈錳坤
dc.subject.keyword基因表現資料分析,基因調控網絡,序列性資料探勘,zh_TW
dc.subject.keywordgene expression data analysis,gene regulatory networks,sequential data mining,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2005-07-14
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
617.48 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved