請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38170完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭景宗(Jing-Tzung Kuo) | |
| dc.contributor.author | Wen-Ting Lin | en |
| dc.contributor.author | 林文婷 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:27:23Z | - |
| dc.date.available | 2005-07-26 | |
| dc.date.copyright | 2005-07-26 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-14 | |
| dc.identifier.citation | [1] Thomas A. Zawodzinski, John Davey, Judith Valerio, Shimshon Gottesfeld, (1995). “The Water Content Dependence Of Electro-Osmotic Drag In Proton-Conducting Polymer Electrolytes”, Electrochemica Acta, 40(3), 297
[2] V.A. Paganin, E.A. Ticianelli, E.R. Gonzalez, (1996). J. Appl. Electrochem. 26, 297-304 [3] F. Lufrano, E. Passalacqua, G. Squadrito, A. Patti, L. Giorgi, (1999). “Improvement in the diffusion characteristics of low Pt-loaded electrodes for PEFCs” J. Appl. Elecrochem, 29, 445-448 [4] E. Passalacqua, G. Squadrito, F. Lufrano, A. Patti, L. Giorgi, (2001). “Effects of the Diffusion Layer Characteristics on the Performance of Polymer Electrolyte Fuel Cell Electrodes”, J. Appl. Elecrochem., 31, 449-454 [5] Z. Poltarzew, P. Staiti, A. Aldercucci, (1992). ” Nafion Distribution in Gas Diffusion Electrodes for Solid Polymer Electrolyte Fuel Cell Applications”, J. Electrochem. Soc., 139, 761 [6] P. Staiti, Z. Poltarzewski, A. Aldercucci, (1994). ”Solid polymer electrolyte fuel cell (SPEFC) research and development at the institute CNR-TAE of messina”, International Journal of Hydrogen Energy, 19, 523 [7] T. R. Ralph, G. A. Hards, and J. E. Keating, (1997). “Low Cost Electrodes for Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc., 144(11), 3845-3857 [8] Giorgi, L., Antolini, E., Pozio, A., Passalacqua, E., (1998). ”Influence of the PTFE content in the diffusion layer of low Pt loading electrodes for polymer electrolyte fuel cells”, Electrochimica Acta, 43, 24, 3675-680 [9] Wilson, M. S., Gottesfield, S., (1992). ”High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells”, J. Electrochem. Soc., 139(2), L28-30 [10] S. Gottesfeld (1995). “Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers ”, Electrochimica Acta , 40(3), 355-363 [11] Zhigang, Qi., Kaufman, A., (2003). “Low Pt loading high performance cathodes for PEM fuel cells”, Journal of Power Sources, 113, 37-43 [12] Zhigang, Qi., Kaufman, A., (2002). “Enhancement of PEM fuel cell performance by steaming or boiling the electrode”, Journal of Power Sources, 109, 227-229 [13] Zhigang, Qi., Kaufman, A., (2002). “Activation of low temperature PEM fuel cells”, Journal of Power Sources, 111, 181-184 [14] R. Cohen, (1966), “Gemini Fuel Cell System”, Proceedings 20th Power Sources Conference, 24.-26 th, May, 21-24 [15] M. S. Wilson, J. A. Valerio, S. Gorresfeld, (1994). “Endurance Testing of Low Pt Loading Polymer Electrolyte Fuel Cells”, ECS, Spring Meeting, San Francisco (CA), May 22-27, Volume94-1, Abstract Number 607, p.p. 966 [16] Stumper J., Campbell S.A., Wilkinson D.P., Johnson M.C., Davis M. (1998). “In-situ methods for the determination of current distributions in PEM fuel cells”, Electrochimica Acta, 43(24), 3773-3783 [17] S. Mukerjee, J. McBreen, (1999). ”An In Situ X-Ray Absorption Spectroscopy Investigation of the Effect of Sn Additions to Carbon-Supported Pt Electrocatalysts: Part I”, J. Electrochem. Soc., 146, 600-606 [18] S. Swathirajan, Y. M. Mikhail, (1991). “Electrochemical Oxidation of Methanol at Chemically Prepared Platinum-Ruthenium Alloy Electrodes”, J. Electrochem. Soc., 138, 1321-1326 [19] R. S. Weber, M. Peuckert, R. A. DallaBetta, M. Boudart, (1988). “Oxygen reduction on small supported platinum particles II. Characterization by X-RAY absorption spectroscopy”, J. Electrochem. Soc., 135(10) , 2535-2538. [20] Hockaday R , Navas C. (1999). “Micro-fuel cells for portable electronics”, Proceeding of the European Fuel Cell Forum Portable Fuel Cells Conference, Lucerne, pp.45-54 [21] J. H. Lee, T. R. Lalk, A. J. Appleby, (1998). “Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks”, Journal of Power Source, 70, 258-268 [22] Andrew Rowe, Xianguo Li, (2001). “Mathematical modeling of proton exchange membrane fuel cells”, Journal of Power Sources 102, 82-96 [23] Shao Zhingang, Yi Baolian, Han Ming (1999), “Bifunctional electrodes with a thin catalyst layer for ‘unitized’ porton exchange membrane regenerative fuel vell ”, Journal of Power Source, 79, 82-85 [24] Young-Gab Chun, Chang-Soo Kim, Dong-Hyun Peck, Dong-Ryul Shin, (1998). ” Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes”, Journal of Power Source, 71, 174-178 [25] S. Y. Cha, and W. M. Lee (1999), “Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the membrane surface”, J. Electrochem. Soc., 146 (11), 4055-4060 [26] D. Bevers, R. Rogers, M. von Bradke, (1996). “Examination of the influence of PTFE coating properties of carbon paper in polymer electrolyte fuel cells”, Journal of Power Source, 63, 193-201 [27] J. Moreira, A.L. Ocampo, (2003), “Influence of the hydrophobic material content in the gas diffusion electrodes on the performance of a PEM fuel cell”, Int. J. Hydrogen Energy, 28, 625-627 [28] V. A. Paganin, E. A. Ticianelli, E. R. Gonzalez, (1996). “Development and electrochemical studies of gas diffusion electrodes for polymer electrelyte fuel cells ”, Journal of Applied Electrochemistry, 26, 197-304 [29] Deryn Chu, Rongzhong Jiang, (1999). “Comparative studies of polymer electrolyte membrane fuel cell stack and signal cell”, Journal of Power Sources, 80, 226-234 [30] Bevers, D., Wagner, N., VonBradke, M., (1998). ”Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures”, International Journal of Hydrogen Energy, 23(1), 57-63 [31] T. Tomoyuki, US Patent 5,843,519 (1998) [32] Ryan O’Hayre, Sang-Joon Lee, Suk-Won Cha (2002). “A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading”, Journal of Power Source, 109, 483-493 [33] J. Laminie, & A. Dicks, (2nd ed.). (2002). Fuel Cell Systems Explained. UK: WILEY [34] Wolf Vielstich, Arnold Lamm, Hubert A. Gasteiger. (2003). Handbook of fuel cells: fundamentals, technology, and applications. Chichester, England; Hoboken, N.J.: Wiley [35] 林昇佃、余子隆、張幼珍等合著(2004)。燃料電池-新世紀能源。台中。滄海書局。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38170 | - |
| dc.description.abstract | 本論文主要研究方向為質子交換膜燃料電池的心臟--薄膜電極組,薄膜電極組佔整顆電池成本約80%,因此若能減低薄膜電極組的製造成本,無疑能減少燃料電池整體的花費。
本文中採用傳統疏水性方法製造觸媒電極,並以中科院所製之MEA效能作為比較。MEA之組成如三明治般,由氣體擴散層,觸媒層,高分子電解質膜,氣體擴散背層等結構結合而成,每一層結構之含量差異或不同類型都會對性能造成影響。 石墨雙極板的鏤空流道處主要是氣體反應區,肋條則為電子傳送區域,若加大流道-肋條比,則可使反應氣體增加,但卻減少電子傳輸路徑。本實驗主要將電極製作方法分成流道區和肋條區,採取不同分佈方式塗佈觸媒,或是在不同區域製作氣體擴散層等方法,研究不同類型的MEA對性能有無影響。 實驗得知,氣體會通過觸媒層進行反應,當觸媒大部分分佈於流道區時,在低電流密度,氣體會滲入被遮蔽的肋條底下,但肋條底下觸媒存在少,因此對性能無助益。而當電流密度提昇時,氣體消耗速率加快,會有較少的氣體滲入肋條端,此時加重流道處的觸媒量,可以提升性能。若增加肋條端氣體擴散層的厚度,可增進質傳效果,因為在傳輸方向增加了氣體的輸送路徑,使傳輸限制降低,氣體可以充分進行反應,使性能也相對的提升。 本文對於MEA的製作方法不同於以往,可看出某些方法對於MEA性能有所改善,若能將這些製程制式化,甚或減少材料用量,則可對於燃料電池成本降低有所助益。 | zh_TW |
| dc.description.abstract | This paper focuses on the heart of PEMFC (Proton Exchange Membrane Fuel Cell)—Membrane Electrode Assembly. The MEA accounts for about 80% of whole cell cost. If we can lower the manufacturing costs of the MEA, then we can reduce the whole cost of fuel cell.
In the paper, we adopt the traditional hydrophobic method to make the catalyst electrode, and compare the efficiency with the MEA made by Chung-Shan Institute of Science and Technology. The structure of MEA is like sandwich, made up by gas diffusion layer, catalyst layer, polymer electrolyte membrane, and backing layer. The different composition of each layer would lead to the different performance. The hollow channel part of the graphite bipolar plate is mainly the gas reacting area, and the rib part conveys the electron. If we strengthen the ratio of flow and rib, we can make reacting gas increase. However, this action would reduce the electron transmission routes. This experiment divides the manufacture method of the electrode into two parts- flow area and rib area, also take different ways to coat catalyst layer or make the gas diffusion layer on the different areas, etc. Through this experiment, this paper aims at investigating whether the different kinds of MEA will have a influence on performance of MEA. From the experiment, we can learn that, when the catalyst is mostly distributed on flow channel, the gas would react thought the layer, and at low current density, the gas would permeate into the part covered by the rib. However, there is a bit of catalyst under ribs, so it’s not helpful to the performance. And at high current density, the gas consuming rate increase, and less gas would permeate into the rib part.At this time, if we raise the catalyst amount of flow part, then we can improve the performance. If we increase the thickness of gas diffusion layer under rib area, we can promote the mass transmission, because the gas would fully react after we increase the gas transport route of transmission direction to reduce transmit limiting.In comparison, the performance would improvement. The manufacture practiced in this paper is different from what has been done in the past. We can find that some methods would improve the MEA performance. If we can make the procedure more general, or reduce material consumption, then can reduce the fuel cell cost helpfully. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:27:23Z (GMT). No. of bitstreams: 1 ntu-94-R92522317-1.pdf: 2212626 bytes, checksum: 263193cbad075ce9827775bc1d6783ae (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT II 目錄 IV 表目錄 X 圖目錄 XI 符號說明 XIV 第一章 緒論 1 1.1 前言 1 1.2 燃料電池介紹 1 1.2.1 歷史沿革 2 1.3 各式燃料電池及基本原理 4 1.3.1 質子交換膜燃料電池 (PEMFC) 4 1.3.2 鹼性燃料電池 (AFC) 6 1.3.3 磷酸燃料電池 (PAFC) 7 1.3.4 熔融碳酸鹽燃料電池 (MCFC) 8 1.3.5 固態氧化物燃料電池 (SOFC) 9 1.3.6 直接甲醇燃料電池 (DMFC) 10 1.3.7 再生型燃料電池 (RFC) 10 1.4 綜合比較 11 1.5 應用領域 12 1.5.1 軍事上的應用 12 1.5.2 移動裝置上的應用 12 1.5.3 居民家庭的應用 13 1.5.4 空間領域的應用 13 1.5.5 固定的應用 14 1.5.6 運輸上的應用 14 1.6 國內外發展現況 15 1.6.1 磷酸型燃料電池 (PAFC) 15 1.6.2 熔融碳酸鹽型燃料電池 (MCFC) 16 1.6.3 固體高分子型燃料電池 (PEFC) 18 1.7 未來展望 18 1.8 文獻回顧 19 第二章 質子交換膜型燃料電池 21 2.1 歷史沿革 21 2.2 簡介 21 2.3 工作原理 22 2.4 電極構造 22 2.4.1 膜電極組 22 2.4.2 雙極流道板 22 2.4.2.1 雙極板功能 23 2.4.2.2 主要材料 23 2.4.2.3 流道類型 25 2.4.3 電流收集板 26 2.4.4 墊圈 27 2.4.5 端板 27 2.5 關鍵技術 27 2.5.1 內部水管理 27 2.5.2 水傳輸行為 27 2.5.3 溫度管理 28 2.5.3.1 冷卻方式 28 2.5.4 操作壓力 29 2.5.4.1 壓力管控問題 29 2.5.4.2 高壓力操作的優勢分析 29 2.5.5 反應物的管理 30 第三章 膜電極組 32 3.1 基本結構 32 3.2 氣體擴散層 33 3.2.1 氣體擴散層基材 33 3.3 觸媒層 34 3.4 固態高分子電解質 35 3.4.1 功能 35 3.4.2 構造 36 3.4.3 種類 37 3.5 質子交換膜燃料電池的作用原理 39 3.6 性能表現 40 第四章 MEA製備實驗及分析 42 4.1 實驗目的 42 4.2 實驗設備 43 4.2.1 實驗材料 43 4.2.2 噴塗設備及製程 43 4.2.3 單電池組合構件 47 4.2.4 測試與分析系統 49 4.2.4.1 氣體加濕及溫度控制控制模組 49 4.2.4.2 流量控制模組 51 4.2.4.3 資料擷取模組 51 4.3 MEA相關製程 52 4.3.1 質子交換膜前處理 52 4.3.2 氣體擴散層疏水處理 53 4.3.3 氣體擴散背層塗佈 53 4.3.4 觸媒層塗佈 53 4.3.4.1 現有電極製作方式 54 第五章 實驗結果與討論 57 5.1 實驗步驟 57 5.1.1 質子交換膜前處理 57 5.1.2 氣體擴散層之疏水處理 58 5.1.3 氣體擴散背層塗佈 58 5.1.4 觸媒層塗佈 59 5.1.5 Nafion 塗佈 59 5.1.6 熱壓結合 59 5.1.7 MEA飽水處理 60 5.2 MEA性能表現及測試 60 5.2.1 MEA活化 60 5.2.2 反應機制 61 5.2.3 性能測試 61 5.3 陽極端不同形式MEA分佈研究 63 5.3.1 氣體擴散層類型對性能之影響 63 5.3.2 觸媒層類型對性能之影響 67 5.4 陰極端不同形式MEA分佈研究 70 5.3.3 氣體擴散層類型對性能之影響 70 5.3.4 觸媒層類型對性能之影響 75 5.5 結論 81 5.6 未來工作與展望 82 參考文獻 84 | |
| dc.language.iso | zh-TW | |
| dc.subject | 膜電極組 | zh_TW |
| dc.subject | 質子交換膜燃料電池 | zh_TW |
| dc.subject | PEMFC | en |
| dc.subject | MEA | en |
| dc.title | 質子交換膜型燃料電池膜電極組內觸媒分布形式對性能之研究分析 | zh_TW |
| dc.title | Performance Studies and Analysis of Pt Distributed Type within MEA of PEMFC | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭榮和(Jung-Ho Cheng),張崴縉(Wei-Chin Chang) | |
| dc.subject.keyword | 質子交換膜燃料電池,膜電極組, | zh_TW |
| dc.subject.keyword | PEMFC,MEA, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
