Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38165
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李志豪(Jyh-Hao Lee)
dc.contributor.authorChuan-Hsing Kuoen
dc.contributor.author郭傳興zh_TW
dc.date.accessioned2021-06-13T16:27:18Z-
dc.date.available2005-07-15
dc.date.copyright2005-07-15
dc.date.issued2005
dc.date.submitted2005-07-15
dc.identifier.citation[1] Bullough R. K., Caudrey(eds) P. J., Solitons, Topics in Current Physics, Springer-Verlag, 17,1980.
[2] Beals R., Coifman R. R., Scattering and inverse scattering for rst order systems, Comm. Pure
Appl. Math., 37, 1984, No.1, pp.39-90.
[3] Beals R., Coifman R. R., Inverse scattering and evolution equations, Comm. Pure Appl. Math.,
38, 1985, No.1, pp.29-42.
[4] Chang Chien-Hung, A special case of n n Zakharov-Shabat system, National Taiwan Univ.
Master Thesis, 1990
[5] Degasperis A., Fordy A. P., and Lakshmanan M., Nonlinear evolution equations: integrability
and spectral methods ,Manchester University Press, 1990
[6] Drazin P. G., Johnson R. S., Solitons: an Introduction, Cambridge University Press,1989
[7] Hietarinta J., Introduction to the Hirota bilinear method:Integrability of nonlinear system
(Pondicherry 1996) , Lecture Notes in Physics,Springer-Verlag, Berlin, 495, 1997, pp.95-103.
[8] Hirota R.,Direct methods in soliton theory,in Solitons, edited by R.K.Bullough and
P.J.Caudrey,Springer-Verlag Berlin Heidelberg New York,1980.
[9] Hirota R., Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14(7),
1973.
[10] Hirota R.,The direct method in soliton theory,Cambridge Tracts in Mathematics,155.Cambridge
University Press,Cambridge,2004.
[11] Kaup D.J., Newell A.C., An exact solution for a derivative nonlinear Schrodinger equation, J.
Math. Phys. , 19(4), 1978, pp.789-801
[12] Lee Jyh-Hao, Global solvability of the derivative nonlinear Schrodinger equation, Transactions
of the A.M.S., 314(1), 1989, pp.107-118.
[13] Lee Jyh-Hao, Inverse scattering transform and D-bar method, National Science Council Report,
1990-1991
[14] Lee Jyh-Hao, Inverse scattering transform and Wavelets, National Science Council Report, 1991-
1992
[15] Lee Jyh-Hao, On the dissipative evolution equation associated with Zakharov-Shabat system
with a quadratic spectral parameter, Transactions of A. M. S., 316(2), 1989, pp.327-336.
[16] Lee Jyh-Hao, Solvability of the derivative nonlinear Schrodinger equation and the massive thirring
model, Teoreticheskayai Matematicheskaya Fizika, 99(2), 1994, pp.322-328
[17] Lee Jyh-hao,Lee Yen-Ching,Lin Chien-Chih, Exact solutions of DNLS and the derivative
Reaction-Diffusion System, to appear in J. of Nonlinear Math. Physics, Vol.9 (2002),Suppl. 1, 87-
98. Proc. of the Special Session on Integrable Systems of the First Joint Meeting of AMS-HKMS
, Dec. 13-16, 2000, Hong Kong.
[18] Lee Jyh-hao,Lee Yen-Ching,Lin Chien-Chih, Some exact solutions of DNLS and derivative
Reaction-Diffusion systems via Hirota method, Proc. of 10th Workshop on Differential Equations,
Chang-Hua Univ. of Education, Nov. 2-4, 2001.
[19] Lee Yen-Ching, Exact solutions of the derivative nonlinear Schrodinger equation and the derivative
reaction-diffusion system via Hirota bilnearization method, National Taiwan Univ. Master
Thesis, Jan. 1999.
[20] Lin Chao-Ting, One and two dimension inverse scattering transform and the associated evolution
equations, National Taiwan Univ. Master Thesis, 1992
[21] Lin Chien-Chih, Exact solutions of the derivative reaction-di usion system via Hirota bilnearization
method, National Taiwan Univ. Master Thesis, Jan. 2001
[22] Martina L., Pashaev O. K. and Soliani G., Integrable dissipative structures in the gauge theory
of gravity, Classical Quantum Gravity, 14(12), 1997, pp.3179-3186.
[23] Miwa T.,Jimbo M.,Date E., Solitons,Cambridge Tracts in Mathematics,135.Cambridge University
Press,Cambridge,2000.
[24] Nakamura A., Chen H.-H., Multi-soliton solutions of a derivative nonlinear Schr odinger equation,
J. Phys. Soc. Japan, 49(2), 1980, pp.813-816
[25] Nakamura A., Hirota R., A new example of explode-decay solitary waves in one-dimension, J.
Phys. Soc. Japan ,5(2), 1985, pp.491-499.
[26] Pashaev O. K., Lee Jyh-Hao, and Lin Chi-Kun, Equivalence relation and bilinear representation
for derivation nonlinear Schr odinger type equations, , Proc. of the Workshop on Nonlinearity,
Integrability and All That-20 years after NEEDS'79, Gallipoli, Lecce, Italy, July 1-10, 1999 , pp.
175-181, World Scienti c, 2000.
[27] Pashaev O. K., Lee Jyh-Hao, Self-dual vortices in chern-simons hydrodynamics, Theor. Math.
Phys.127(2001)779-788
[28] Pashaev O. K., Lee Jyh-Hao, Integrability and Quantum potential from dissipatons to exponentially
localized Chern-Simon solitons, Proc. of the Workshop on Nonlinearity, Integrability and
All That-20 years after NEEDS'79, Gallipoli, Lecce, Italy, July 1-10, 1999 , pp. 479-503, World
Scienti c, 2000.
[29] Pashaev O. K., Lee Jyh-Hao, Black holes and solitons of quantized dispersionless NLS and DNLS
equations, , to appear in ANZIAM J. of Applied Maths(continues of J. of Australian Mathematical
Society, Ser. B:Applied Math.).
[30] Pashaev O. K. and Lee Jyh-hao, Resonance solitons as black holes in Madelung
uid, Modern
Physics Letters A, Vol. 17, No. 24 (2002),1601-1619.
[31] Pashaev O. K. and Lee Jyh-hao, Bilinear representation for the modi ed nonlinear Schr odinger
equation and their quantum potential deformation, presented in the Workshop on Nonlinear
Physics: Theory and Experimenst.II , Gallipoli(Lecce), Italy, June 27-July 6, 2002
[32] Pashaev O. K. and Lee Jyh-hao, Solitons resonances for MKP-II,presented in the Workshop on
Nonlinear Physics:Theory and Experiments.II,Gallipolli(Lecce),Italy, June-July,2004
[33] Rogers,Colin ,private communication.
[34] Shaw J.-C. and Yen H.-C., Solving DNLS equation by Riemann problem technique, Chinese J.
of Mathematics, 18(3), 1990, pp.283-293.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38165-
dc.description.abstract本論文首先重述二階AKNS-ZS 系統之質譜問題及相關之進展方程。此方程之孤立子解可由退化之逆質譜變換求得,也可由Hirota 雙
線性法求得。
我們也重述具量子位能之NLS 及DNLS 與相關之反應擴散方程。我們也考慮混合型方程之情形。用Hirota 法求得1-dissipaton 解,這
已由Pashaev et al.求出[31],我們於第三章3.3 節附上1-dissipaton 的函數圖。我們也求得2-dissipaton 解,就我們所知這結果是新的。
zh_TW
dc.description.abstractIn this thesis, we will review some results on NLS and DNLS and the versions with 'quantum potential'. At first, we will review some results about two by two AKNS-ZS system with a linear and quadratic spectral parameter. Here exact solutions of NLS and DNLS could be obtained by degenerate inverse scattering transform, also by Hirota bilinearization method.
We also review the reaction-diffusion systems related to NLS with 'quantum potential' and derivative reaction-diffusion systems related to DNLS with 'quantum potential'. Here we consider the mixed type case called modified NLS with 'quantum potential'. Some exact
solutions (e.g. one-dissipatons, two-dissipatons) of the related mixed type Reaction-Diffusion
system(MDRD) are constructed by Hirot a bilinearization method. Some plots of the one-dissipatons are given in section 3.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:27:18Z (GMT). No. of bitstreams: 1
ntu-94-R91221013-1.pdf: 1011995 bytes, checksum: da8f28e3f022abb16fc0b29bd94623c8 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsContents
1 Introduction . . . . . . . . . . . . . . . . . . . . . .1
2 Examples of nonlinear evolution equation from U-V condition . . . . . . . . . . . . . . . . . . . . . .2
2.1 Review on 22 AKNS-ZS system with a linear spectral parameter in Beals-Coifman set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.1 Scattering problem . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.2 Associated evolution equations . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Review on 22 AKNS-ZS system with a quadratic spectral parameter . . . . . . . . . . . . . . . . . 3
2.2.1 Scattering problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 Associated evolution equations . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Examples of 22 U-V equations with linear and quadratic spectral parameters . . . . . . . . . . . . . 4
2.4 Comparison of One-Soliton Solutions via Different Methods . . . . . . . . . . . . . . . . . . .6
3 NLS & DNLS with 'quantum potential' 8
3.1 DNLS with 'quantum potential' . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Modied NLS with 'Quantum Potential' . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Some plots of exact solutions . . . . . . . . . . . . . . . . . . . . . . . 13
4 Conclusion . . . . . . . . . . . . . . . . . . 14
Appendix . . . . . . . . . . . . . . . . . . 15
A Equivalent Relations . . . . . . . . . . . . . . . . . 15
B Some computation results for the asymptotic expansion of MJM.......................................17
C Hirota Bilinear Method.......20
D Possible application (Colin Rogers' remarks).........21
D.1 Some equation in plasma.......................21
D.2 NLS with 'quantum potential'.............21
D.3 Reaction-Diffusion System related to NLS with 'quantum potential'..................22
Bibliography ..............................23
dc.language.isoen
dc.subject具微分項反應擴散方程zh_TW
dc.subject反應擴散方程zh_TW
dc.subjectNLSen
dc.subjectReaction-Diffusion Systemsen
dc.subjectDerivative Reaction-Diffusion Systemsen
dc.subjectDNLSen
dc.title反應擴散方程及具微分項反應擴散方程之公式解及其應用zh_TW
dc.titleSome Exact Solutions of Reaction-Diffusion Systems and
Derivative Reaction-Diffusion Systems and the Application
en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張秋俊,李榮耀,邵錦昌,吳德琪
dc.subject.keyword反應擴散方程,具微分項反應擴散方程,zh_TW
dc.subject.keywordReaction-Diffusion Systems,Derivative Reaction-Diffusion Systems,DNLS,NLS,en
dc.relation.page24
dc.rights.note有償授權
dc.date.accepted2005-07-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
988.28 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved