請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38156完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李水盛 | |
| dc.contributor.author | Yi-Chun Lai | en |
| dc.contributor.author | 賴怡君 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:27:10Z | - |
| dc.date.available | 2008-08-02 | |
| dc.date.copyright | 2005-08-02 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-14 | |
| dc.identifier.citation | 1. 廖日京,台灣樟科學名之訂正,pp.148,國立台灣大學農學院森林系,台北,1988。
2. FLORA of TAIWAN, second edition, 1996, Vol. 2, pp.495, National Taiwan University, Taipei, Taiwan. 3. Chang, F. R.; Hsieh, T. J.; Huang, T. L.; Chen, C. Y.; Kuo, R. Y.; Chang, Y. C.; Chiu, H. F.; Wu, Y. C. Cytotoxic constituents of the stem bark of Neolitsea acuminatissima. J. Nat. Prod. 2002, 65(3), 255-258. 4. Lee, S. S.; Wang, P. H.; Chiou, C. M.; Chen, I. S.; Chen, C. H. Isoquinoline Alkaloids from Litsea garciae and Neolitsea villosa. The Chinese Pharmaceutical Journal 1995, 47, 69-75. 5. Lee, S. S. and Yang, H. C. Isoquinoline Alkaloids from Neolitsea Konishii. J. Chin. Chem. Soc. 1992, 39, 189-194. 6. Tomita, M.; Lu, S. T.; Fu, S. C. and Lin, Y. M. Studies on the alkaloids of Formosan lauraceous plants. VI. Alkaloids of Neolitsea acuminatissima (Hayata) Kanehira et Sasaki. Yakugaku Zasshi - Journal of the Pharmaceutical Society of Japan. 1965, 85(7), 662-664. 7. Nakasato, T.; Asada, S.; Koezuka, Y. Alkaloids isolated from the trunk bark of Neolitsea sericea (Blume) Koidz. Journal of the Pharmaceutical Society of Japan 1966, 86(2), 129-34. 8. Lin, F. W.; Wang J. J. and Wu, T. S. New pavine N-oxide alkaloids from the stem bark of Cryptocarya chinensis Hemsl. Chem. Pharm. Bull. (Tokyo) 2002, 50(2), 157-159. 9. Bentley, K. W.β-Phenylethylamines and the isoquinoline alkaloids. Nat. Prod. Rep., 2003, 20, 342–365. 10. Bentley, K. W. β-Phenylethylamines and the isoquinoline alkaloids. Nat. Prod. Rep., 2004, 21, 395–424. 11. Goren, A. C.; Zhou, B. N. and Kingston, D. G. Cytotoxic and DNA damaging activity of some aporphine alkaloids from Stephania dinklagei. Planta Medica. 2003, 69(9), 867-868. 12. Pyo, M. K.; Yun-Choi, H. S. and Hong, Y. J. Antiplatelet activities of aporphine alkaloids isolated from leaves of Magnolia obovata. Planta Medica. 2003, 69(3), 267-269. 13. Jantan, I.; Rafi, I. A. and Jalil, J. Inhibition of platelet-activating factor receptor binding by aporphine and phenanthrenoid alkaloids from Aromadendron elegans. Planta Medica. 2001, 67(5), 466-467. 14. Boustie, J.; Stigliani, J. L. ; Montanha, J.; Amoros, M.; Payard, M. and Girre, L. Antipoliovirus structure-activity relationships of some aporphine alkaloids. J. Nat. Prod. 2005, 61(4), 480-484. 15. Wu, Y. C.; Liou, Y. F. and Lu, S. T. Antimicrobial activity of isoquinoline alkaloids and their N-oxide derivatives. The kaohsiung J. Med. Sci. 1998, 4(6), 336-344. 16. Corcoran, O; and Spraul, M. LC-NMR-MS in drug discovery. Drug Discovery Today 2003, 8(14), 624-31. 17. Spraul, M; Freund, A. S.; Nast, R.E.; Withers, R.S.; Maas, W.E.; Corcoran, O. Advancing NMR Sensitivity for LC-NMR-MS using a Novel Cryoflow probe: Application to the Analysis of Acetaminophen Metabolites in Urine. Anal. Chem. 2003, 75, 1546-1551. 18. Godejohanna, M.; Tsenga, L.H.; Braumanna, U.; Fuchserb, J. and Spraula, M. Characterization of a paracetamol metabolite using on-line LC-SPE-NMR-MS and a cryogenic NMR probe. Journal of Chromatography A 2004, 1058, 191–196. 19. Seger, C.; Godejohann, M.; Tseng, L.H.; Spraul, M.; Girtler, A.; Sturm, S. and Stuppner, H. LC-DAD-MS/SPE-NMR Hyphenation. A Tool for the Analysis of Pharmaceutically Used Plant Extracts:Identification of Isobaric Iridoid Glycoside Regioisomers from Harpagophytum procumbens. Anal. Chem. 2005, 77, 878-885. 20. Miliauskas, G.; Teris A. van Beek ; Pieter de Waard ; Venskutonis, R.P. and Ernst J. R. Sudho. Identification of Radical Scavenging Compounds in Rhaponticum carthamoides by Means of LC-DAD-SPE-NMR. J. Nat. Prod. 2005, 68, 168-172. 21. Wang, C. Y. and Lee, S. S. Analysis and Identification of Lignans in Phyllanthus urinaria by HPLC-SPE-NMR. Phytochem. Anal. 2005, 16, 120–126. 22. Sympson, N. J. K. Solid-Phase Extraction : Principles, Techniques and Applications. Marcel Dekker, New York, 2000. 23. 張嘉銓,國立臺灣大學醫學院藥學研究所博士論文 I. 葉下珠根部化學成分之研究 II. 衍自葉下株抗病毒木脂素之研究 III. 以高效液相層析-固相萃取-核磁共振儀分析麻德拉斯葉下珠之化學成分. 2004, Oct. 24. Sun, S. W.; Lee, S. S.; Huang, H. M. Determination of lauraceous aporphine alkaloids by high-performance liquid chromatography. J. Pharm. Biomed. Anal. 1996, 14, 1383-1387. 25. Tseng, L. H.; Braumann, U.; Godejohann, M.; Lee, S. S.; Albert, K. Structure identification of aporphine alkaloids by on-line coupling of HPLC-NMR with loop storage. J. Chin. Chem. Soc. 2000, 47, 1231-1236. 26. Ringdahl, B.; Chan, R. P. K. and Craig, C. Circular Dichroism of Aporphines. J. Nat. Prod. 1981, 44, 80-85. 27. Stevigny, C.; Habib Jiwan, J. L.; Rozenberg, R.; Edmond de Hoffman; Joele, Q.L. Key fragmentation patterns of aporphine alkaloids by electrospray ionization with multistage mass spectrometry. Rapid commun. Mass spectrum. 2004, 18, 523-528. 28. Gunes, H. S.; Gozler, B. Two novel proaporphine-tryptamine dimers from Roemeria hybrida. Fitoterapia, 2001, 875-887. 29. Amber 8 User’s Manual. 2004, Feb. 25. (http://amber.scripps.edu/doc8/amber8.pdf) 30. Andrew, R. L. Molecular Modeling:Principles and Applications, second edition, Pearson Education, England, 2001. 31. Solomons, T.W.G. Organic Chemistry, sixed edition, John Wiley & Sons, Inc, USA, 1996. 32. Raith, K. and Neubert, R. Electrospray Tandem Mass Spectrometric Investigations of Morphinans. J. Am. Soc. Mass. Spectrom. 2003, 14, 1262–1269. 33. Chiapella, C.; Radovan, R. D.; Moreno, J.A.; Casares, L.; Barb, J.; Llagostera, M. Plant activation of aromatic amines mediated by cytochromes P450 and flavin- containing monooxygenases. Mutation Research 2000, 470,155–160. 34. Cashman, J. R. Human and plant flavin- containing monooxygenase N-oxidation of amines: detoxication vs. bioactivation. Drug Metab. Rev. 2002, 34(3), 513–521. 35. Lee, S. S.; Chen, C. K.; Chen, I. S.; Liu, K. C. S. Additional isoquinoline alkaloids from Litsea cubeba. J. Chin. Chem. Soc., 1992, 39(5), 453-455. 36. Lee, S. S. and Tseng, C. C. Isoquinoline Alkaloids from Litsea acuminata. The Chinese Pharmaceutical Journal 1994, 46, 299-305. 37. Schmidhammer, H.; Brossi, A. Synthesis of 2-hydroxy-6-keto-N- methylmorphinans, their O-methyl ethers, and 2-deoxy congeners. Can. J. Chem. 1982, 60, 3055-3060. 38. Montgomery, C. T.; Freyer, A. J.; Guinaudeau, H.; Shamma, M. N-methyllaurotetanine N-oxide from Glossocalyx Brevipes. J. Nat. Prod. 1985, 48(5), 833-834. 39. Tojo, E.; Dorninguez, D.; Castedo, L. O-MethylPallidine N-oxide, The first morphinandienone N-oxide alkaloid. J. Nat. Prod. 1989, 52(2), 415-416. 40. Dasgupta, S.; Ray, A.B.; Bhattacharya, S.K. and Bose, R. Constituents of Pachygone ovata and pharmacological action of its major leaf alkaloids. J. Nat. Prod. 1979, 42(2), 399-406. 41. Gouda, H.; Yamazaki, K.; Hasegawa, J.; Hirono, S. Refinement of the NMR structures of alpha-conotoxin MI using molecular dynamics simulation with explicit solvent water and a full molecular force field. Chem. Pharm. Bull. 2001, 49(3), 249-252. 42. Bouchemal, C. N.; Braccini, I.; Derouet, C.; Herve, P. C. and Michon, V. Conformational analysis of disaccharides using molecular dynamics and NMR methods. Int. J. Biol. Macromol. 1995, 17(3-4), 177-182. 43. Kamigauchi, M.; Kanbaraa, N.; Sugiuraa, M.; Iwasaa, K.; Ohishib, H. and Ishidab, T. Berberine/Cyclodextrin Inclusion Structure Studied by 1H-NMR Spectroscopy and Molecular-Dynamics Calculations. Helvetica Chimica Acta 2004, 87, 264-271. 44. FLORA of TAIWAN, second edition, 1996, 2, 86-487, National Taiwan University, Taipei, Taiwan. 45. 王正樞, 國立臺灣大學醫學院藥學研究所碩士論文 I.棗酸根極性成分之研究. II. 樟科植物金新木薑子黃酮類成分之研究. 1994, Jun. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38156 | - |
| dc.description.abstract | 本論文以高效液相層析-固相萃取-核磁共振技術應用在植物之化學成分分離及結構鑑定,研究金新木薑子及變葉新木薑子葉部之化學成分。
一、 金新木薑子葉部生物鹼成分之研究 新木薑子屬之樟科植物含有異奎寧生物鹼且有些具有心血管之活性,為了徹底地探討蘭嶼植物金新木薑子 (Neolitsea sericea var. aurata) 葉部所含之生物鹼成分,本實驗以高效液相層析-固相萃取-核磁共振 (HPLC-SPE-NMR)之連結技術做研究。 其葉部酒精萃取物之酚性生物鹼部分被分為氯仿可溶及水可溶兩部分,再分別以HPLC-SPE-NMR技術分析及鑑定,自氯仿可溶部分共得到五個已知之異奎寧生物鹼:laurolitsine (1)、boldine (2)、reticuline (3)、laurotetanine (4) 和actinodaphnine (5)。自水可溶部分共得到九個異奎寧生物鹼:9S,17S-pallidine N-oxide (6)、corytuberine (7)、1S,2S-reticuline N-oxide (8)、6R,6aS-boldine N-oxide (9)、1S,2R-reticuline N-oxide (10)、norisocorydine (11)、1R,2R-juziphine N-oxide (12)、6S,6aS-N-methyllaurotetanine N-oxide (13)及6R,6aS-N-methyllaurotetanine N-oxide (14)。其中化合物6、8、9、13為新化合物,而化合物10、12及14乃首見於新木薑子屬植物;化合物6、8、10、14以半合成方式製備以確認其立體化學結構。本研究亦對alpha或 beta-N-oxide對附近氫核化學位移之影響進行探討,並利用分子動力學模擬之技術探討化合物8和10之立體化學,據此可合理解釋。 二、變葉新木薑子葉部黃酮類成分之研究 本論文第二部分是研究樟科新木薑子屬植物變葉新木薑子(Neolitsea variabillima) 的黃酮類成分。植物葉部的乙醇萃取物經過極性分割後,正丁醇可溶部分先利用薄層層析掃瞄儀 (TLC scanner) 做初步分析,續以膠濾層析 (Sephadex LH-20) 分離,最後利用HPLC-SPE-NMR之連結技術,共分離並鑑定三個黃酮類成分,分別為 (2R,3R)-dihydroquercetin 3-O-rhamnoside (a)、quercetin 3-O-rhamnoside (b) 及kaempferol 3-O-rhamnoside (c);此三個化合物皆為已知,以樣品a, b及c比對無誤。本研究提供一個快速篩選黃酮類的方法,對天然物之研究大有助益。 | zh_TW |
| dc.description.abstract | This thesis was aimed to apply LC-SPE-NMR hyphenated technique in the isolation and structural elucidation of chemical constituents from two plant materials, i.e. the leaves of Neolitsea sericea var. aurata and Neolitsea variabillima.
I. Study on the alkaloids from the leaves of Neolitsea sericea var. aurata Lauraceous plants of the Neolitsea genus have been shown to contain isoquinoline alkaloids, some of which possess cardiovascular effects. This study was aimed to investigate thoroughly the alkaloids present in the leaves of N. sericea (Blume) Koidz. var. aurata Hayata, a Lauraceous plant indigenous to Lanyu island, via the application of LC-SPE-NMR hyphenated technique. The phenolic alkaloids obtained by the general method from the EtOH extract were divided into fractions soluble in water and chloroform. The water and chloroform fractions were then analyzed by LC-SPE-NMR method. From the chloroform fraction, five known isoquinoline alkaloids, i.e. laurolitsine (1), boldine (2), reticuline (3), laurotetanine (4) and actinodaphnine (5) were characterized. From the water fraction, nine isoquinoline alkaloids, i.e. 9S,17S-pallidine N-oxide (6), corytuberine (7), 1S,2S-reticuline N-oxide (8), 6R,6aS-boldine N-oxide (9), 1S,2R-reticuline N-oxide (10), norisocorydine (11), 1R,2R-juziphine N-oxide (12), 6S,6aS-N-methyllaurotetanine N-oxide (13) and 6R,6aS-N-methyllaurotetanine N-oxide (14) were characterized. Among them, compounds 6, 8, 9, 13 are new and compounds 10, 12, 14 are first found in the Neolitsea plants. The structural conformations of compounds 6, 8, 10 and 14 were achieved by comparing their spectral data with those synthetic compounds prepared in this study. The effect of alpha and beta- N-oxidation on the chemical shifts of the adjacent protons was investigated and the stereochemistries of compounds 8 and 10 were rationalized by the assistance of Molecular Dynamics Simulation (MD Simulation) technique. II. Study on the flavonoids from the leaves of Neolitsea variabillima This study was aimed to investigate the flavonoids present in the leaves of Neolitsea variabillima. The EtOH extract was first divided into several fractions by liquid-liquid partitioning. The flavonoids present in the BuOH fraction was further concentrated by Sephadex LH-20 and analyzed by LC-SPE-NMR hyphenated technique. Totally, three flavonoids, i.e. (2R,3R)-dihydroquercetin 3-O-rhamnoside (a), quercetin 3-O-rhamnoside (b) and kaempferol 3-O-rhamnoside (c) were identified. They were confirmed by HPLC analysis spiked with the samples a, b and c. This study provided a method for fast screening of flavonoids. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:27:10Z (GMT). No. of bitstreams: 1 ntu-94-R92423016-1.pdf: 3660113 bytes, checksum: 62810c224d298121a8f66857458254da (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 總目錄
中文摘要…………………………………II 英文摘要…………………………………………IV 目錄……………………………………………………VI 流程圖目錄 (List of Schemes)…………………………………………………IX 表目錄 (List of Tables)…………………………………………………………X 圖目錄 (List of Figures)………………………………………………………XI 辭彙 (Glossary)……………………………………………………………………XV 目錄 高效液相層析-固相萃取-核磁共振技術之應用: 一、 金新木薑子葉部生物鹼成分之研究 一、 緒論與研究目的………………………………………………………………1 1.1 植物介紹………………………………………………1 1.2 台灣樟科Neolitsea屬植物之生物鹼成分………………………………………2 1.3 研究目的…………………………………………………5 1.4 LC-SPE-NMR介紹……………………………………………………………………6 二、 結果與討論………………………………………………………………………7 2.1 Fr. V之HPLC-SPE-NMR分析……………………………………………………9 2.2 Fr. VI之HPLC-SPE-NMR分析…………………………………………………12 2.3 化合物6, 7, 8, 10, 12, 13, 14 之CD分析……………………………………16 2.4 化合物1-14之結構解析………………………………………………………17 2.4.1 Aporphine類成分…………………………………………………………17 2.4.1.1 具1, 2, 9, 10四取代之aporphines: laurolitsine (1), boldine (2), laurotetanine (4), actinodaphnine (5), 6R,6aS-boldine N-oxide (9), 6S,6aS-N-methyllaurotetanine N-oxide (13), 6R,6aS-N-methyllaurotetanineN-oxide (14)……………………17 2.4.1.2 具1, 2, 10, 11四取代之aporphines: corytuberine (7), norisocorydine (11)……………………………21 2.4.2 Morphinan類成分:9S,17S-pallidine N-oxide (6)………………………23 2.4.3 Benzylisoquinoline類成分: reticuline (3), 1S,2S-reticuline N-oxide (8), 1S,2R-reticuline N-oxide (10), 1R,2R-juziphine N-oxide (12)…………27 2.5 化合物8, 10之MD Simulation與NOESY分析……………………………31 2.6 Fr. VI之ESI-MS分析………………………………………………………38 2.7 結論…………………………………………40 三、實驗部分………………………………………………………………………41 3.1 儀器與材料……………………………………………………………………41 3.1.1 植物材料……………………………………………………………………41 3 1.2 成分分析及分離配備………………………………………………………41 3.1.3 試劑與溶劑…………………………………………………………………43 3.1.4 樣品…………………………………………………………44 3.2 分離方法………………………………………………………44 3.2.1 金新木薑子葉部酚性(Phenolic)與非酚性(Nonphenolic)生物鹼之割分…44 3.2.2 以化學反應方法區分二級及三級生物鹼……………………………45 3.2.3 Fr. III之膠濾管柱(Sephadex LH-20)層析…………………………………45 3.2.4 以HPLC-SPE-NMR的方法進行成分分離及結構分析…………………47 3.2.5 以ESI-MS輔助結構鑑定…………………………………………………47 3.2.6 以樣品利用HPLC比對確認………………………………………………48 3.3 化合物6, 6a, 8, 10, 13, 14之製備方法……………………………………49 3.3.1 N-methyllaurotetanine N-oxides (13, 14)之製備…………………………49 3.3.2 化合物pallidine N-oxides (6, 6a)之製備…………………………………50 3.3.3 化合物reticuline N-oxides (8, 10) 之製備………………………………53 3.4 化合物8, 10之MD Simulation之方法………………………………………55 二、變葉新木薑子葉部黃酮類成分之研究 一、緒論與研究目的………………………………………………………………59 1.1 植物介紹………………………………………………………………………59 1.2 研究目的………………………………………………………………………59 二、結果與討論……………………………………………………………………60 2.1 正丁醇可溶部分 (Fr. 1)及甲醇可溶部分 (Fr. 2)之成分分析………………60 2.2 總黃酮類 (Fr. 3)之HPLC-SPE-NMR分析及結構鑑定………………………61 2.3 Fr. 3-peak a, b, c之結構分析…………………………………………………65 2.3.1 Fr. 3之peak a [(2R,3R)-dihydroquercetin 3-O-rhamnoside (a)] 之結構分析…………………………………………………………65 2.3.2 Fr. 3之peak b [quercetin 3-O-rhamnoside (b)] 之結構分析…………66 2.3.3 Fr. 3之peak c [kaempferol 3-O-rhamnoside (c)] 之結構分析…………66 2.4 結論........................................................61 三、實驗部分………………………………………………………………………69 3.1 儀器與材料……………………………………………………………………69 3.1.1 植物材料……………………………………………………………………69 3.1.2 成分分析及分離配備………………………………………………………69 3.1.3 試劑與溶劑…………………………………………………………………70 3.1.4 黃酮類(Flavonoid)樣品濃度………………………………………………70 3.2 分離方法………………………………………………………………………71 3.2.1 先以一般抽提生物鹼的方法分離…………………………………………71 3.2.2 以極性分割法分離…………………………………………………………71 3.2.3 正丁醇可溶物之成分初步分析…………………………………………71 3.2.4 Fr. 1及Fr. 2之膠濾層析(Sephadex-LH-20)分離………………………72 3.2.5 以HPLC-SPE-NMR之方法分析結構……………………………………73 3.3 以黃酮類樣品a, b, c, d比對Fr. 3中各成分………………………………73 參考文獻 (References)………………………………………………………………74 附圖 (Spectra Appendices)…………………………………………………………79 流程圖目錄 ( List of Schemes ) Scheme 1. Separation outline for alkaloids present in Neolitsea sericea var. aurata…8 Scheme 2. Fractionation and separation for alkaloids present in the leaves of Neolitsea sericea var. aurata……………………………………………46 Scheme 3. Preparation of N-methyllaurotetanine N-oxides (13, 14).................50 Scheme 4. Preparation of 9S,17S-pallidine N-oxide (6)……………………………52 Scheme 5. Preparation of 1S,2S-reticuline N-oxide (8) and 1S,2R-reticuline N-oxide (10)…………………………………………54 Scheme 6. Fractionation of EtOH extracts from the leaves of Neolitsea variabillima.............................................72 表目錄 ( List of Tables ) Table 1. NS and SN ratio data of peaks in Figure 3 (method 1, CD3CN, 400 MHz)..11 Table 2. NS and SN ratio data of peaks in Figure 4 (method 2, CD3CN, 600 MHz)........................................................11 Table 3. NS and SN ratio data of peaks in Figure 6 (method 3, CD3CN, 600 MHz).……………………………………………13 Table 4. NS and SN ratio data of peaks in Figure 7 (method 4, CD3CN, 600 MHz)……………………………………………14 Table 5. 1H-NMR data of TFA salts of compounds 1, 2, 4, 5, 9, 13, 14 (CD3CN, 600 MHz)……………………………………………………….20 Table 6. Comparisons of 1H-NMR data of synthetic 6R,6aS-N-methyllaurotetanine N-oxide 14 and N-methyllaurotetanine (CD3CN)……………………20 Table 7. 1H-NMR data of the TFA salts of compounds 7, 11 (CD3CN, 600 MHz)....23 Table 8. Comparisons of NOESY (Figure 26-28) and Model (Figure 10) results of 9S,17S-pallidine N-oxide (6)………………………………………………24 Table 9. Comparisons of 1H-NMR data of natural 9S, 17S-pallidine N-oxide (6, peak6), synthetic 6 and pallidine (CD3CN).…………………………25 Table 10. 1D and 2D NMR data of 9S,17S-pallidine N-oxide (6) (C5D5N, 400 MHz)……………………………………………………26 Table 11. 1H-NMR data of reticuline (3, peak 3, Fr. V), 1S,2S-reticuline N-oxide (8, peak 8, Fr. VI), 1S,2R-reticuline N-oxide (10, peak 10, Fr. VI) and 1R,2R-juziphine N-oxide (12, peak 12, Fr. VI) (CD3CN, 600 MHz)…......29 Table 12. 1H-NMR data of reticuline (3), reticuline TFA salt (3, peak 3, Fr. V), natural and synthetic compounds of 1S,2S-reticuline N-oxide (8) and 1S,2R-reticuline N-oxide (10) (CD3CN)…………………………………30 Table 13. 1H-NMR data of 1S,2S-reticuline N-oxide (8) and 1S,2R-reticuline N-oxide (10) (CD3OD, 400 MHz)………………………34 Table 14. NOESY data of 1S,2S-reticuline N-oxide (8) (CD3OD, 400 MHz)………35 Table 15. NOESY data of 1S,2R-reticuline N-oxide (10) (CD3OD, 400 MHz)……36 Table 16. The MD simulation data of 1S,2S-reticuline N-oxide (8) and 1S,2R-reticuline N-oxide (10) (MeOH)……………………………37 Table 17. Fr. 1以TLC Scanner初步檢測的結果…………………………………60 Table 18. NS and SN ratio data of three peaks in Figure 15 (400 MHz)……………62 圖目錄 ( List of Figures ) Figure 1. 金新木薑子之植物形態…………………………………………………1 Figure 2. Schematic representation of the LC-SPE-NMR hyphenation…………6 Figure 3. HPLC chromatogram of Fr. IV (method 1, UV detection at 280 nm).........9 Figure 4. HPLC chromatogram of Fr. V (method 2, UV detection at 280nm)............9 Figure 5. 1H-NMR spectra of compounds 1-5 (Fr. V-peaks 1-5, method 2, CD3CN, 600 MHz)...............................................................................10 Figure 6. HPLC chromatogram of Fr. VI (method 3, UV detection at 280 nm).......12 Figure 7. HPLC chromatogram of Fr. VI (method 4, UV detection at 280 nm).......13 Figure 8. 1H-NMR spectra of compounds 6-14 (Fr. VI-peaks 6-14, method 3, CD3CN, 600 MHz).......................................................................16 Figure 9. NOED results of compound 14………………………………………19 Figure 10. ChemDraw 3D Model of 9S,17S-pallidine N-oxide (6) after MMP2 energy minimization……………………………………………………24 Figure 11. NOED results of compound 10 (CD3CN, delta/ppm )………………………28 Figure 12. Conformation A (8) with the lowest energy of 1213.5 kcal/mol and Conformation B (10) with the lowest energy of 1206.2 kcal/mol obtained from MD Simulation (MeOH)....................33 Figure 13. Conformation A for 8 and Conformation B for 10, obtained based on NOESY data and MD Simulation (MeOH)……………………………33 Figure 14. ESI-MS spectrum of Fr. VI……………………………………………9 Figure 15. HPLC chromatogram of Fr. 3 (UV detection at 280 nm and 254 nm).......61 Figure 16. UV spectra of compounds a, b, c………………………………………62 Figure 17. 1H-NMR spectra of compounds a, b, c [CD3CN, 400 MHz]......................63 Figure 18. CD spectra of compounds 6, 7, 8, 10, 12, 13 and 14............................79 Figure 19. CD spectra of 9S,17S-pallidine N-oxide (6, peak 6) and pallidine (bottom)..............................................................................80 Figure 20. UV spectra of Fr. VI-peaks 6, 7, 8, 10, 11, 12, 13, 14.......................81 Figure 21. 1H-NMR spectra of N-formyllaurolitsine (1a, peak 1a) and N- formylactinodaphnine (5a, peak 5a) [CD3OD, 400 MHz]……………82 Figure 22. 1H-NMR spectra of laurolitsine TFA salt (1, peak 1) and boldine TFA salt (2, peak 2) [CD3CN, 600 MHz]......................................83 Figure 23. 1H-NMR spectra of reticuline TFA salt (3, peak 3) and laurotetanine TFA salt (4, peak 4) [CD3CN, 600 MHz].............................84 Figure 24. 1H-NMR spectra of actinodaphnine TFA salt (5, peak 5, CD3CN, 400 MHz) and 9S,17S-pallidine N-oxide (6, peak 6, CD3CN, 600 MHz)..85 Figure 25. 1H-NMR spectra of 9S,17S-pallidine N-oxide (6, peak 6) (a) [CD3CN, 600 MHz], synthetic 6. mCBA salt (b) [CD3CN, 200 MHz] and synthetic pure 6 (c) [CD3CN, 400 MHz]........86 Figure 26. 1H-NMR spectrum of 9S,17S-pallidine N-oxide (6) [C5D5N, 400 MHz]……………...………………………………………87 Figure 27. NOESY spectra of 9S,17S-pallidine N-oxide (6) [C5D5N, 400 MHz]...88 Figure 28. NOESY spectra of 9S,17S-pallidine N-oxide (6) [C5D5N, 400 MHz]....89 Figure 29. 1H-NMR spectra of 1S,2S-reticuline N-oxide (8, peak 8) (600 MHz) and synthetic 8 (400 MHz) (CD3CN)......................................90 Figure 30. 1H-NMR spectra of 1S,2R-reticuline N-oxide(10, peak 10) (600 MHz) and synthetic 10 (400 MHz) (CD3CN)....................................90 Figure 31. NOED spectra of 1S,2S-reticuline N-oxide (8) and 1S,2R-reticuline N-oxide (10) [CD3CN, 400 MHz]……………………92 Figure 32. 1H-NMR spectra of 1S,2S-reticuline N-oxide (8) and 1S,2R-reticuline N-oxide (10) [CD3OD, 400 MHz]……………………93 Figure 33. NOESY spectra of 1S,2S-reticuline N-oxide (8) [CD3OD, 400 MHz]......94 Figure 34. NOESY spectrum of 1S,2R-reticuline N-oxide (10) [CD3OD, 40 MHz]...95 Figure 35. 1H-NMR spectra of corytuberine TFA salt (7, peak 7) and norisocorydine TFA salt (11, peak 11) [CD3CN, 600 MHz]………96 Figure 36. 1H-NMR spectra of 6S,6aS-N-methyllaurotetanine N-oxide (13, peak 13) and 6R,6aS-N-methyllaurotetanine N-oxide (14, peak 14) [CD3CN, 600 MHz]………………………………………97 Figure 37. 1H-NMR and NOED spectra of synthetic 6R,6aS-N-methyl- laurotetanine N-oxide (14) (CD3CN) (200 MHz for for a, 400 MHz for b and c)…………………………………………………………………98 Figure 38. 1H-NMR spectra of 6R,6aS-boldine N-oxide (9, peak 9) and 1R,2R-juziphine N-oxide (12, peak 12) [CD3CN, 600 MHz]…………99 Figure 39. ESI-MS spectra of 9S,17S-pallidine N-oxide (6, peak 6) and corytuberine (7, peak 7)...........................................................................100 Figure 40. ESI-MS spectra of 1S,2S-reticuline N-oxide (8, peak 8) and 1S,2R-reticuline N-oxide (10, peak 10).............................................101 Figure 41. ESI-MS spectra of 1R,2R-juziphine N-oxide (12, peak 12) and 6S,6aS-N-methyllaurotetanine N-oxide (13, peak 13)……………102 Figure 42. ESI-MS spectrum of 6R,6aS-N-methyllaurotetanine N-oxide (14, peak 14)…………………………………………………………103 Figure 43. ESI-MS and MS/MS (bottom) spectra of synthetic 6R,6aS-N-methyllaurotetanine N-oxide (14)……………………………104 Figure 44. ESI-MS and MS/MS (bottom) spectra of synthetic of 9S,17S-pallidine N-oxide (6)....................................................................105 Figure 45. ESI-MS and MS/MS (bottom) spectra of synthetic 1S,2R-reticuline N-oxide (10)..................................................................106 Figure 46. ESI-MS and MS/MS (bottom) spectra of synthetic 1S,2S-reticuline N-oxide (8).....................................................................107 Figure 47. HPLC chromatogram of Fr. VI (UV detection at 230 nm).............108 Figure 48. HPLC chromatogram of Fr. VI spiked with pallidine………………108 Figure 49. HPLC chromatogram of Fr. VI spiked with N-methyllaurotetanine..109 Figure 50. HPLC chromatogram of Fr. VI spiked with reticuline………………109 Figure 51. HPLC chromatogram of Fr. VI spiked with juziphine………………110 Figure 52. HPLC chromatogram of Fr. VI spiked with corytuberine……………110 Figure 53. HPLC chromatogram of synthetic 6S,6aS-N-methyllaurotetanine N-oxide (13) and 6R,6aS-N-methyllaurotetanine N-oxide (14)………111 Figure 54. HPLC chromatogram of Fr. VI spiked with synthetic 6S,6aS-N-methyl- laurotetanine N-oxide (13) and 6R,6aS-N-methyllaurotetanine N-oxide (14)……………………………………………………………111 Figure 55. HPLC chromatogram of synthetic 9S,17S-pallidine N-oxide (6)………112 Figure 56. HPLC chromatogram of Fr. VI spiked with synthetic 9S,17S-pallidine N-oxide (6)…………………………………………112 Figure 57. HPLC chromatogram of synthetic 1S,2S-reticuline N-oxide (8) and 1S,2R-reticuline N-oxide (10)............................................................113 Figure 58. HPLC chromatogram of synthetic 1S,2R-reticuline N-oxide (10)……113 Figure 59. HPLC chromatogram of Fr. VI spiked with synthetic 1S,2S-reticuline N-oxide (8).....................................................................114 Figure 60. HPLC chromatogram of Fr. VI spiked with synthetic 1S,2R-reticuline N-oxide (10)…………………………………………114 Figure 61. 1H-NMR spectra of (2R,3R)-dihydroquercetin 3-O-rhamnoside (a) and quercetin 3-O-rhamnoside (b) [CD3CN, 400 MHz]..........................115 Figure 62. 1H-NMR spectrum of kaempferol 3-O-rhamnoside (peak c) [CD3CN, 400 MHz]..................................................................................116 Figure 63. HPLC chromatogram of Fr. 3 spiked with (2R,3R)-dihydroquercetin 3-O-rhamnoside (a)..................................................................................116 Figure 64. HPLC chromatogram of Fr. 3 spiked with quercetin 3-O-rhamnoside (b)................................................................................................117 Figure 65. HPLC chromatogram of Fr. 3 spiked with kaempferol 3-O-rhamnoside (c).............................................................................................117 | |
| dc.language.iso | zh-TW | |
| dc.subject | 高效液相層析-固相萃取-核磁共振 | zh_TW |
| dc.subject | 異奎寧生物鹼 | zh_TW |
| dc.subject | 分子動力學 | zh_TW |
| dc.subject | isoquinoline alkaloids | en |
| dc.subject | HPLC-SPE-NMR | en |
| dc.subject | MD Simulation | en |
| dc.title | 高效液相層析-固相萃取-核磁共振技術之應用:
一、 金新木薑子葉部生物鹼成分之研究 二、 變葉新木薑子葉部黃酮類成分之研究 | zh_TW |
| dc.title | Applications of LC-SPE-NMR Technique:
I. Study on the alkaloids from the leaves of Neolitsea sericea var. aurata II. Study on the flavonoids from the leaves of Neolitsea variabillima | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳春雄,徐鳳麟 | |
| dc.subject.keyword | 高效液相層析-固相萃取-核磁共振,異奎寧生物鹼,分子動力學, | zh_TW |
| dc.subject.keyword | HPLC-SPE-NMR,isoquinoline alkaloids,MD Simulation, | en |
| dc.relation.page | 117 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 3.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
