請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3814
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳復國 | |
dc.contributor.author | Min-Hsuan Hsieh | en |
dc.contributor.author | 謝閔軒 | zh_TW |
dc.date.accessioned | 2021-05-13T08:37:04Z | - |
dc.date.available | 2019-07-01 | |
dc.date.available | 2021-05-13T08:37:04Z | - |
dc.date.copyright | 2016-10-14 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-02 | |
dc.identifier.citation | [1]M. P. Heisler, “Temperature charts for induction and constant temperature heating”, Transactions of the ASME, Vol. 69, pp. 227-235, 1947.
[2]A. C. Loos, and G.S. Springer, “Curing of epoxy matrix composites”, Journal of composite materials, Vol. 17, pp. 135-169, 1983. [3]T. A. Bogetti, and J. W. Jr. Gillespie, “Two-dimensional cure simulation of thick thermosetting composites”, Journal of composite materials, Vol. 25, pp. 239-273, 1991. [4]H. C. Park, and S. W. Lee, “Cure simulation of thick composite structures using the finite element method”, Journal of composite materials, Vol. 35, pp. 188-201, 2001. [5]M. Duval, “Investigation and modelling of the heat transfer process in carbon fibre/epoxy composite tools”, PhD thesis, Carleton University, Canada, 2005. [6]D. C. Blest, B. R. Duffy, S. McKee, and A. K. Zulkifle, “Curing simulation of thermoset composites”, Composites Part A: applied science and manufacturing, Vol. 30, pp. 1289-1309, 1999. [7]J. S. Kim, and D. G. Lee, “Development of an autoclave cure cycle with cooling and reheating steps for thick thermoset composite laminates”, Journal of composite materials, Vol. 31, pp. 2264-2282, 1997. [8]R. Joven, R. Das, A. Ahmed, P. Roozbehjavan, and B. Minaie, “THERMAL PROPERTIES OF CARBON FIBER-EPOXY COMPOSITES WITH DIFFERENT FABRIC WEAVES”, SAMPE International Symposium Proceedings Conference, Wichita State University, January 2012. [9]V. K. Pillai, A. N. Beris, and P. S. Dhurjati, “Implementation of model-based optimal temperature profiles for autoclave curing of composites using a knowledge-based system”, Industrial & engineering chemistry research, Vol. 33, pp. 2443-2452, 1994. [10]V. Antonucci, M. Giordano, S. Inserraimparato, and L. Nicolais, “Analysis of heat transfer in autoclave technology”, Polymer composites, Vol. 22, pp. 613-620, 2001. [11]A. R. Upadhya, G. N. Dayananda, G. M. Kamalakannan, J. Ramaswamy Setty, and J. Christopher Daniel, “Autoclaves for aerospace applications: Issues and challenges”, International Journal of Aerospace Engineering, 2011. [12]G. N. Xie, J. Liu, W. H. Zang, G. Lorenzini, and C. Biserni, “Simulation and improvement of temperature distributions of a framed mould during the autoclave composite curing process”, Journal of Engineering Thermophysics, Vol. 22, pp. 43-61, 2013. [13]A. Maffezzoli, and A. Grieco, “Optimization of parts placement in autoclave processing of composites”, Applied Composite Materials, Vol. 20, pp. 233-248, 2013. [14]N. Liebers, H. Ucan, M. Kühn, M. Kleineberg, and M. Meyer, “Masterbox: new concept for a dynamic autoclave process control”, CEAS Aeronautical Journal, Vol. 2, pp. 223-230, 2011. [15]F. Dumont, W. Fröhlingsdorf, and C. Weimer, “Virtual autoclave implementation for improved composite part quality and productivity”, CEAS Aeronautical Journal, Vol. 4, pp. 277-289, 2013. [16]N. E. J. Kluge, T. S. Lundström, A. L. Ljung, L.G. Westerberg, and T. Nyman, “An experimental study of temperature distribution in an autoclave”, Journal of Reinforced Plastics and Composites, 2016. [17]N.E.J. Kluge, T.S. Lundström, L.G. Westerberg, and T. Nyman, “Modelling heat transfer inside an autoclave: Effect of radiation”, Journal of Reinforced Plastics and Composites, 2016. [18]S. V. Hoa, “Principles of the Manufacturing of Composite Materials”, DEStech Publications, Inc., 2009. [19]R. Di Sante, “Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications”, Sensors, Vol. 15, pp. 18666-18713, 2015. [20]黃茂益,「複合材料之民生應用」,新新季刊,42卷第二期,頁87-95,2014。 [21]莊達平、王正煥,「武器用結構複合材料介紹」,新新季刊,42卷第二期,頁24-37,2014。 [22]章俊文、陳浩明,「大型無人飛機(先進複合材料結構)的開發與中國大陸及美國相關發展」,空軍學術雙月刊,628期,頁99-109,2012。 [23]雷震台,「台灣航空產業發展現況及未來展望」,中華民國航空太空學會會刊,44卷第一期,2014。 [24]複合材料製造技術。http://met.ctu.edu.tw/ezfiles/15/1015/img/913/155376568.pdf [25]歷年航空產業產值,經濟部航空產業發展推動小組。http://www.casid.org.tw/Page.aspx?ID=9e2d07e8-9f61-4e7a-8485-63b5dcd16dda [26]漢翔公司先進複材中心。http://www.aidc.com.tw/tw/list/10/01/09 [27]Eric Schwartz, “Aircraft and Technology Drivers for 21st Century Air Transportation Systems”, Boeing Company, 2006. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3814 | - |
dc.description.abstract | 纖維複合材料因其優異的機械性質和質量輕等特性,已經逐漸取代傳統金屬材料而被大量使用在飛機主要結構、內裝與引擎外罩等部位,許多現代的大型客機之複合材料使用比例已超過50%,也就是說複合材料已經成為了現代飛機零件中主要使用的材料。而在航太工業中常見的複合材料零件製造係採用熱壓爐成型製程,此製程可以穩定產出品質較好且形狀複雜之飛機零件,符合了航太工業高品質要求,但是因為製程時間長且需要花費大量的人力進行檢測,藉由不斷的測試方能找出穩定生產的方式,故本論文希望能透過電腦輔助工程減少測試次數以及縮短製程時間,達到節省零件製造成本的目的。
本論文首先建立了熱壓爐模型與邊界條件,並且將通風口所測量到的流速結果代入模擬中,在忽略放置模具架子與複合材料的情形下進行單一模具不包含複材之熱壓爐成型熱傳CAE分析,接著將模擬與實驗結果進行驗證,比對結果發現模擬結果與實驗有相同的升溫趨勢,且模具前、中、後段的升溫效果也與實驗結果接近,驗證結果顯示此組熱壓爐CAE模型能夠完整模擬實際熱壓爐成型中之模具升溫情形。 由於複合材料以非常多材料所組合而成,造成了幾何形狀非常複雜且厚度差異非常大,導致複合材料模型與材料參數的建立需要花費大量時間,故本論文建立了等效複合材料分析模型,採取等厚度的等效複合材料模型,分別討論複合材料之等效熱傳導係數、等效比熱與等效密度共三種關鍵係數之建立方式。最後以此等效複合材料模型在不考慮樹脂成化所產生的放熱反應下進行CAE模擬分析,並針對模具、複合材料和蜂巢共三種位置之測量點分別進行實驗驗證,驗證結果發現以此CAE分析模型所預測到達成化溫度之平均時間誤差小於10%,顯示本論文所建立之CAE分析模型已具實務應用之價值。 | zh_TW |
dc.description.abstract | Fiber-reinforced composite has gradually replaced the traditional material, such as metallic material, to be used in aircraft structure, interior and nacelle due to its excellent mechanical properties and light-weight. Nowadays, the percentage of fiber-reinforced composite used in airliner has over 50%. In other words, fiber-reinforced composite has become the main material for manufacturing modern aircraft parts. In the aerospace industry, autoclave forming process is commonly adopted for the manufacture of composite parts. This process can stably produce high quality and complex shape parts. Although autoclave forming process can reach the standard of aerospace, it spends a lot of time for trial and error to search for a steady way to produce parts. Therefore, in this thesis efforts were endeavored to reduce the lead time and save the production cost for the autoclave forming process with the use of the finite element analysis.
This thesis first establishes the finite element model which can simulate both the air flow and the heat transfer presented in the autoclave forming process. The air flow speeds at different locations around the circumference of the autoclave inlet were measured and used as the initial air flow speeds for the simulation model. A measured temperature at the autoclave inlet was also used as an input data. The finite element simulations were then performed for a simplified model in which the composite layers were not considered. The heating efficiency is represented by the temperature evolution of the die surface at various locations during the heating process and a fast heating rate was anticipated. The temperature evolution of the die surface at various locations obtained from the finite element simulations and measured from the actual autoclave forming process was compared. The comparison reveals that the heating paths resulted from the simulation results and the measured data agree with each other in trend and the quantitative difference is within an acceptable range. It confirms that established finite element model with the specified initial and boundary conditions is capable of predicting the heat transfer during the autoclave process. In addition, this thesis also builds an equivalent material model for the composite in order to decrease the computation time that strongly depends on the complex geometry and the various thicknesses of the composite layers. The equivalent material model considers the composite layers having an equal thickness with the honey-cone structure built in. The equivalent thermal properties such as the thermal conductivity, specific heat and density were also determined by experiments performed and the theoretical derivations. With the equivalent material properties of the composite layers applied to the simulation model aforementioned, the temperature evolution of the die surface at various locations obtained from the finite element simulations differs from that measured from the actual autoclave forming process only within a range of 10%. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T08:37:04Z (GMT). No. of bitstreams: 1 ntu-105-R03522527-1.pdf: 6689946 bytes, checksum: 9254a06fdf40d9aa7f196e9268d03661 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 目錄 I
圖目錄 IV 表目錄 VIII 第一章 緒論 1 1.1 背景與目的 2 1.2 研究方法與步驟 4 1.3 文獻回顧 6 1.4 論文總覽 9 第二章 熱壓爐成型介紹 11 2.1 熱壓爐製程介紹 11 2.1.1 預浸材的準備 12 2.1.2 模具準備 14 2.1.3 疊貼 15 2.1.4 進爐成化 16 2.2 熱壓爐簡介 19 2.3 熱壓爐成型量測實驗介紹 21 2.4 有限元素軟體FLUENT介紹 25 2.5 材料性質 26 2.5.1 固體材料性質 26 2.5.2 流體材料性質 27 第三章 初始熱壓爐模型與邊界條件建立 29 3.1 初步模型建立 29 3.1.1 模具模型建立 32 3.1.2 初始熱壓爐分析模型建立 34 3.1.3 模擬時間探討 38 3.1.4 第一版熱壓爐邊界條件 40 3.2 第一版模擬結果與實驗驗證 41 3.3 進風口邊界條件探討 44 3.4 第二版模擬結果與實驗驗證 45 3.5 小結 47 第四章 改良熱壓爐模型與邊界條件建立 50 4.1 改良熱壓爐模型建立 50 4.2 改良熱壓爐邊界條件 53 4.3 第三版熱壓爐空爐狀態模擬 54 4.4 第三版模擬結果與實驗驗證 55 4.5 通風口邊界條件探討 58 4.6 第四版模擬結果與實驗驗證 60 4.7 小結 63 第五章 熱壓爐加熱單一模具與複合材料之分析 65 5.1 等效複合材料模型建立 65 5.1.1 複合材料介紹 66 5.1.2 複合材料模型建立 68 5.2 複合材料等效熱傳係數建立 69 5.2.1 等效熱傳導係數 70 5.2.2 等效密度 76 5.2.3 等效比熱 77 5.3 模具與複合材料熱傳分析結果討論與實驗驗證 78 5.4 小結 85 第六章 結論 86 參考文獻 88 | |
dc.language.iso | zh-TW | |
dc.title | 飛機複合材料零件於熱壓爐成型之熱傳模擬分析 | zh_TW |
dc.title | Simulation of Heat Transfer in the Autoclave Forming Process of Aircraft Composite Parts | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 孫珍理,洪景華,林恆勝 | |
dc.subject.keyword | 計算流體力學,熱壓爐製程,纖維複合材料,樹脂成化,有限元素法, | zh_TW |
dc.subject.keyword | CFD,autoclave forming process,fiber-reinforced composite,epoxy curing,finite element analysis, | en |
dc.relation.page | 91 | |
dc.identifier.doi | 10.6342/NTU201600775 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2016-08-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf | 6.53 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。