請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38140完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王維新 | |
| dc.contributor.author | Hsin-Shun Huang | en |
| dc.contributor.author | 黃新舜 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:26:56Z | - |
| dc.date.available | 2020-12-31 | |
| dc.date.copyright | 2011-07-27 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-19 | |
| dc.identifier.citation | [1] J. T. Boyd, Integrated Optics – Devices and Applications, IEEE Press, 1991.
[2] R. G. Hunsperger, Integrated Optics: Thoery and Technology 5th Ed., Springer-Verlag , 2002. [3] H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits, McGraw – Hill, 1985. [4] I. Andonovic and D. Uttamchandnni, Principles of Modern Optical Systems, chap. 10, Artech House, 1989 [5] E. Voges and A. Neyer, “Integrated-optic devices on LiNbO3 for optical communication,” J. lightwave tech., vol. 5, pp. 1129-1238 [6] G. J. Griffiths and R. J. Esdaile,“Analysis of titanium-diffused planar optical waveguides in lithium niobate,” IEEE J. Quantum Electron., vol. 20, no. 2, pp. 149-159, 1984. [7] P. K. Wei and W. S. Wang, “Fabrication of lithium niobate optical channel waveguides by nickel indiffusion,“ Microwave and Opt. Tech. Lett., vol. 7, pp.219-221, 1994. [8] Y. P. Liao, D. J. Chen, R.C. Lu, and W. S. Wang, “Nickel-indiffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Tech. Lett., vol. 8, pp. 548-550, 1996. [9] 黃文宏,「鎵擴散式鈮酸鋰光波導特性之研究」,國立台灣大學光電工程學研究所博士論文,2008年 [10] K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett., vol. 6, pp. 228-229, 1965 [11] C. L. Lee and C. L. Lu, “CF4 plasma etching on LiNbO3,” Appl. Phys. Lett., vol. 35, pp. 756-758, 1979. [12] Y. Ohmachi and J. Noda, “Electro-optic light modulator with branched ridge waveguide,” Appl. Phys. Lett., vol. 27, pp. 544-546, 1975. [13] I. P. Kaminow and V. Ramaswamy, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett., vol. 24, pp. 622-624, 1974. [14] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Tech., vol. 10, pp. 1606-1609, 1992. [15] 張家豪,「以伽瑪射線及質子交換濕式蝕刻法研製脊型鈮酸鋰光波導」,國立台灣大學電子工程學研究所碩士論文,2009年 [16] W. H. Hsu, K. C. Lin, J. Y. Li, Y. S. Wu, and W. S. Wang, “Polarization splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Sel. Topics Quantum Electron, vol. 11, no. 1, pp. 271-277 Jan./Feb. 2005. [17] R. S. Cheng, T. J. Wang, and W. S. Wang, “Wet-etched ridge waveguides in y-cut lithium niobate,” J. Lightwave Tech., vol. 15, pp.1880-1887, 1997. [18] S.J. Chang, C.L.Tsai, Y. B. Lin, J. F. Liu, and W. S. Wang, “Improved electrooptic modulator with ridge structure in X-cut LiNbO3,” J. Lightwave Tech., vol. 17, pp. 843-847,1999. [19] M. N. Armenise, Fabrication techniques of lithium niobate waveguides,”IEEE Proceedings, vol. 135, pp.85-91, 1988. [20] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication of strip load outdiffusion guides on lithium niobate substrate,”Microwave and Optical Technol. Lett., vol. 5, no.7, pp.309-313, 1992. [21] C.S. Lau, S.F. Liu, P. K. Wei, and W.S. Wang,”A Mach-Zehnder interferometer made of strip-loaded outdiffusion guide, Microwave and Optical Technol. Lett. Vol. 12, pp. 611-613, 1992. [22] V. M. N. Passaro, M. N. Armenise, D. Nedheva, and E. Y. B. Pun,”LiNbO3 optical waveguides formed in a new proton source”J. Lightwave Tech., vol.20, pp.71-77, No.1, 2002. [23] 魏培坤,「金屬擴散式鈮酸鋰光波導之製造及應用」,國立台灣大學電機工程研究所博士論文,1994年 [24] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang,“Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides,”IEEE Photon. Tech. Lett., vol. 4 , No.8, pp. 872-875,1992. [25] R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,”Appl. Phys. Lett., vol. 25, no. 8, pp.458-460, Oct.1974. [26] B. Herrerros and G. Lifante, “LiNbO3 optical waveguides by Zn diffusion from vapor phase,” Appl. Phys. Lett., vol.66, no.20, pp. 1449-1451, 1995. [27] J. J. Aubert, M. Couchaud, and C. Calvat,“Characterization of lithium niboate by γ-ray diffraction,”J. of Crystal Growth,vol.79,pp.530-533, 1986. [28] 賴政治,「伽瑪射線對光波導特性之研究」,國立台灣大學光電工程學研究所博士論文,2006年 [29] K. Noguchi, O. Mitomi, K. Kawano, and M. Yanagibashi, “Highly efficient 40GHz bandwidth Ti- LiNbO3 optical modulator employing ridge structure, ” IEEE Photon. Technol. Lett., vol. 5, pp. 52-54, 1993. [30] S. J. Al-Bader, “Application of etched grooves in integrated-optics channel isolation,” IEEE Photon Technol. Lett., vol. 8, pp. 1044-1046, 1996. [31] H. Haga, M. Izutsu, and T. Sueta, “LiNbO3 traveling-wave length modulator/switch with an etched groove,” IEEE J. Quantum Electron., vol. 6, pp. 902-906, 1986. [32] A. Sugita, K. Jingui, N. Takato, K . Katoh, and M. Kawachi, “Bridge-suspended silica-waveguide thermo-optic phase shifter and its application to Mach-Zehnder type optical switch,” IEEE Trans. IEICE E. Vol. 73, pp. 105-108, 1990. [33] I. P. Kaminow and V. Ramaswamy, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett., vol. 27, pp. 622-624, 1975. [34] Y. Ohmachi, and J. Noda, “Electro-optic light modulator with branched ridge waveguide,” Appl. Phys. Lett., vol. 27, pp.544- 546,1975. [35] C. L. Lee and C. L. Lu,“CF4 plasma etching on LiNbO3 ,” Appl. Phys. Lett., vol. 35, pp.756-758, 1979. [36] J. L. Jackel, R. E. Howard, E. L. Hu, and S. P. Lyman, “Reactive ion etching of LiNbO3 ,” Appl. Phys. Lett., vol. 38, pp. 907-909, 1981. [37] N. Niizeki, T. Yamada, and H. Toyota, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” J. J. Appl. Phys., vol. 6, No. 3, pp. 318-327,1967. [38] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique, ” J. Lightwave Tech., vol. 10, pp. 1606-1609, 1992. [39] 丁天倫,「改良式鈮酸鋰脊形光波導之特性與應用」,國立台灣大學光電工程學研究所博士論文,2006年 [40] Y. N. Korkishko,V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structure and optical properties of proton-exchanged waveguides on z-cut lithium niobate, ”Appl. Opt., vol. 35, No. 36, pp. 7056-7060, 1996. [41] N. Goto and G. L. Yip, “Characterization of proton-exchange and annealed LiNbO3 waveguides with pyrophosphoric acid,” Appl. Opt., vol. 28, No. 1, pp.60-65, 1989. [42] K. Yamamoto and T. Taniuchi, “Characteristics of pyrophosphoric acid proton-exchanged waveguides in LiNbO3,” J. Appl. Phys., vol. 70, No. 11, pp. 6663-6668, 1991 [43] E. Y. B. Pun, S. A. Zhao, and P. S. Chung, “Proton-exchange LiNbO3 optical waveguides using stearic acid,” IEEE Photon. Tech. Lett., vol. 3, No.11, pp. 1006-1008, 1991. [44] Y. S. Son, H. J. Lee, Y. K. Jhee, S. Y. Shin, and B. G. Kim, “Fabrication of LiNbO3 channel waveguides using water,” IEEE Photon. Tech. Lett., vol. 4, No.5, pp. 457-459, 1992. [45] I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, “Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,” A. Phys. Lett., vol 74, pp. 1487-1488, 1999. [46] K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett., vol. 6, pp. 228-229, 1965 [47] T.-J. Wang, C.-F. Huang, W.-S. Wang, and P.-K. Wei, “A novel wet-etching method using electric-field-assisted proton exchange in LiNbO3,“ J. Lightwave Tech., vol.22, pp.1764-1771, 2004. [48] T.-L. Ting, L.-Y. Chen, and W.-S. Wang, “A novel wet-etching method using joint proton source in LiNbO3,” IEEE Photon. Tech. Lett., vol.18, pp.568-570, 2006. [49] Y. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Sel. Topics Quantum Electron., vol. 2, no. 2, pp. 187-196, 1996. [50] 蔡英哲,「伽瑪射線照射鈮酸鋰脊形馬赫任德電光調變器之研製」,國立台灣大學電子工程學研究所碩士論文,2010年 [51] 許佩蘭,「脊形電光調變器之設計與製作」,國立台灣大學電子工程學研究所碩士論文,,2006年 [52] R. C. Alferness, “Waveguide eletrooptic modulator,” IEEE Trans. Microwave Theory Tech., vol. MTT-30, No. 12, pp. 20776-2079, Dec.1993. [53] 陳亮吟,「紫外光照射高分子光波導元件之研製」, 國立台灣大學光電工程研究所碩士論文,2007年 [54] S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Rivere, “Wavelength dispersion of Ti-induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Tech., vol.5(5), pp.700-708, May 1987. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38140 | - |
| dc.description.abstract | 本論文探討伽瑪射線照射鈮酸鋰基板製作脊形光波導,藉以改善脊形外觀結構,並研究其對光場及電光調變特性的影響。
在脊形結構製作方面,使用純苯甲酸及含有已二酸之混合酸兩種不同質子酸源,在相同條件下利用氫氟酸與硝酸之混合酸進行溼式蝕刻,以完成脊形結構。同時,亦在相同的伽瑪射線照射劑量下,比較不同質子酸對脊形結構所造成的影響,以及比較不同的伽瑪射線照射劑量對脊形外觀的變化。實驗數據顯示採用伽瑪射線照射162.5krad且以純苯甲酸作為質子酸源之組合,在蝕刻8小時後,可獲得脊形的深度為4.472μm,深寬比為1.3。 在元件應用上,以製作脊形結構方向耦合器為例,實驗結果顯示經伽瑪射線照射過之元件可縮短耦合長度8.2%,表示耦合效應因伽瑪射線照射而增強。在電光調變部份顯示其半波電壓降低37.94%,訊熄比提高46.54%。證實伽瑪射線可有助於鈮酸鋰積體光學元件之改善。 | zh_TW |
| dc.description.abstract | In this thesis, ridge waveguides are fabricated by using proton exchange and wet etching in gamma-ray irradiated lithium niobate(LiNbO3). Experimental results show the depths and aspect ratios of ridge structures are all improved, which gives rise to optical fields of higher aspect ratios and electro-optic modulators with better characteristics.
The ridge structures are obtained by proton exchange for 8 hr with various acid sources and etched for 8 hr with a mixture of hydrofluoric acid and nitric acid. The deepest depth and the aspect ratio of ridge structure are 4.472μm and 1.3 when the dosage of gamma-ray irradiation is 162.5krad. Moreover, the coupling length is shortened by 8.2% when a ridge-type directional coupler is fabricated with gamma-ray irradiated lithium niobate, which indicates that coupling effect is enhanced due to gamma-ray irradiation. And the half-wave voltage is decreased by 37.94%, and the extinction ratio is increased by 46.54%. Thus, it shows that gamma-ray irradiation is advantageous for the improvement of lithium niobate integrated optical waveguides. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:26:56Z (GMT). No. of bitstreams: 1 ntu-100-R98941015-1.pdf: 3282960 bytes, checksum: 0d7c8f1fcaf9321364ed563171909f7b (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要--------------------------------------------------I
英文摘要--------------------------------------------------II 目錄--------------------------------------------------------III 附圖目錄--------------------------------------------------V 附表目錄--------------------------------------------------VII 第一章 緒論------------------------------------------1 1-1 研究背景------------------------------------1 1-2 研究動機------------------------------------4 1-3 內容簡介------------------------------------6 第二章 材料簡介及波導特性--------------------7 2-1 研究目標與架構---------------------------7 2-2 鈮酸鋰簡介---------------------------------7 2-2-1 材料特性------------------------------------7 2-2-2 光學特性------------------------------------10 2-2-3 光波導特性---------------------------------11 2-3 伽瑪射線簡介------------------------------14 2-4 伽瑪射線對光波導之影響--------------21 第三章 脊形光波導之製作與特性--------------24 3-1 脊形光波導---------------------------------24 3-2 蝕刻法與質子交換原理簡介-----------25 3-2-1 常見的蝕刻方法---------------------------25 3-2-2 質子交換------------------------------------26 3-2-3 質子交換溼式蝕刻法--------------------29 3-3 脊形結構製作及結果--------------------30 3-3-1 製作流程------------------------------------30 3-3-2 實驗結果討論-----------------------------35 3-4 影響重疊積分值之因素----------------45 3-4-1 重疊積分值--------------------------------45 3-4-2 脊形寬度-----------------------------------45 3-4-3 脊形傾斜角度-----------------------------46 3-4-4 脊形深度-----------------------------------46 3-4-5 脊形的電極設計--------------------------47 第四章 方向耦合器之設計及製作-------------49 4-1 光波導耦合原理--------------------------49 4-2 電光調變器原理簡介--------------------53 4-3 元件設計------------------------------------58 4-4 元件製作過程-----------------------------60 4-4-1 晶片切割-----------------------------------62 4-4-2 伽瑪射線照射-----------------------------62 4-4-3 微影術--------------------------------------63 4-4-4 真空鍍膜-----------------------------------64 4-4-5 掀離法與蝕刻法--------------------------67 4-4-6 質子交換-----------------------------------69 4-4-7 濕式蝕刻-----------------------------------70 4-4-8 高溫擴散-----------------------------------70 4-4-9 研磨拋光-----------------------------------71 第五章 量測結果與討論--------------------------72 5-1 量測系統架構-----------------------------72 5-2 光場模態之量測--------------------------74 5-3 耦合長度之量測--------------------------77 5-4 調變訊號量測-----------------------------82 第六章 結論與未來展望--------------------------84 6-1 結論------------------------------------------84 6-2 未來展望------------------------------------87 附錄A-------------------------------------------------------88 A-1 脊形蝕刻深度與伽瑪照射源使用時間關係88 參考文獻---------------------------------------------------89 中英文對照表---------------------------------------------96 | |
| dc.language.iso | zh-TW | |
| dc.subject | 訊熄比 | zh_TW |
| dc.subject | 輻射吸收劑量 | zh_TW |
| dc.subject | 己二酸 | zh_TW |
| dc.subject | 外觀比 | zh_TW |
| dc.subject | 苯甲酸 | zh_TW |
| dc.subject | 雙軸晶體 | zh_TW |
| dc.subject | 光耦合器 | zh_TW |
| dc.subject | 耦合效應 | zh_TW |
| dc.subject | 耦合長度 | zh_TW |
| dc.subject | 方向耦合器 | zh_TW |
| dc.subject | 電光係數 | zh_TW |
| dc.subject | 電光調變器 | zh_TW |
| dc.subject | 電光效應 | zh_TW |
| dc.subject | 鈦擴散式光波導 | zh_TW |
| dc.subject | 鉭 | zh_TW |
| dc.subject | 鈦 | zh_TW |
| dc.subject | 脊形結構 | zh_TW |
| dc.subject | 脊形側壁 | zh_TW |
| dc.subject | 脊形深度 | zh_TW |
| dc.subject | 放射性活度 | zh_TW |
| dc.subject | 質子交換 | zh_TW |
| dc.subject | 重疊積分值 | zh_TW |
| dc.subject | 脊形光波導 | zh_TW |
| dc.subject | 光場 | zh_TW |
| dc.subject | 鈮酸鋰 | zh_TW |
| dc.subject | 苯甲酸鋰 | zh_TW |
| dc.subject | 半波電壓 | zh_TW |
| dc.subject | 伽瑪射線 | zh_TW |
| dc.subject | Ti-indiffused optical waveguide | en |
| dc.subject | electro-optic effect | en |
| dc.subject | electro-optical modulator | en |
| dc.subject | extinction ratio | en |
| dc.subject | gamma ray | en |
| dc.subject | half-wave voltage | en |
| dc.subject | lithium benzoate | en |
| dc.subject | optical field | en |
| dc.subject | optical ridge waveguide | en |
| dc.subject | overlap integral | en |
| dc.subject | proton exchange | en |
| dc.subject | PE | en |
| dc.subject | radioactivity | en |
| dc.subject | ridge depth | en |
| dc.subject | ridge sidewall | en |
| dc.subject | ridge structure | en |
| dc.subject | titanium | en |
| dc.subject | tantalum | en |
| dc.subject | absorbed dose | en |
| dc.subject | absorbed dose | en |
| dc.subject | aspect ratio | en |
| dc.subject | benzoic acid | en |
| dc.subject | biaxial crystal | en |
| dc.subject | coupler | en |
| dc.subject | coupling effect | en |
| dc.subject | coupling length | en |
| dc.subject | directional coupler | en |
| dc.subject | electro-optical coefficient | en |
| dc.title | 在伽瑪射線照射鈮酸鋰基板上研製脊形方向耦合器 | zh_TW |
| dc.title | Design and Fabrication of Ridge-type Directional Coupler on Gamma-ray Irradiated Lithium Niobate Substrate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡振國,彭隆瀚,王子建 | |
| dc.subject.keyword | 輻射吸收劑量,己二酸,外觀比,苯甲酸,雙軸晶體,光耦合器,耦合效應,耦合長度,方向耦合器,電光係數,電光效應,電光調變器,訊熄比,伽瑪射線,半波電壓,苯甲酸鋰,鈮酸鋰,光場,脊形光波導,重疊積分值,質子交換,放射性活度,脊形深度,脊形側壁,脊形結構,鈦,鉭,鈦擴散式光波導, | zh_TW |
| dc.subject.keyword | absorbed dose,absorbed dose,aspect ratio,benzoic acid,biaxial crystal,coupler,coupling effect,coupling length,directional coupler,electro-optical coefficient,electro-optic effect,electro-optical modulator,extinction ratio,gamma ray,half-wave voltage,lithium benzoate,optical field,optical ridge waveguide,overlap integral,proton exchange,PE,radioactivity,ridge depth,ridge sidewall,ridge structure,titanium,tantalum,Ti-indiffused optical waveguide, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
