Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38140
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王維新
dc.contributor.authorHsin-Shun Huangen
dc.contributor.author黃新舜zh_TW
dc.date.accessioned2021-06-13T16:26:56Z-
dc.date.available2020-12-31
dc.date.copyright2011-07-27
dc.date.issued2011
dc.date.submitted2011-07-19
dc.identifier.citation[1] J. T. Boyd, Integrated Optics – Devices and Applications, IEEE Press, 1991.
[2] R. G. Hunsperger, Integrated Optics: Thoery and Technology 5th Ed., Springer-Verlag , 2002.
[3] H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits, McGraw – Hill, 1985.
[4] I. Andonovic and D. Uttamchandnni, Principles of Modern Optical Systems, chap. 10, Artech House, 1989
[5] E. Voges and A. Neyer, “Integrated-optic devices on LiNbO3 for optical communication,” J. lightwave tech., vol. 5, pp. 1129-1238
[6] G. J. Griffiths and R. J. Esdaile,“Analysis of titanium-diffused planar optical waveguides in lithium niobate,” IEEE J. Quantum Electron., vol. 20, no. 2, pp. 149-159, 1984.
[7] P. K. Wei and W. S. Wang, “Fabrication of lithium niobate optical channel waveguides by nickel indiffusion,“ Microwave and Opt. Tech. Lett., vol. 7, pp.219-221, 1994.
[8] Y. P. Liao, D. J. Chen, R.C. Lu, and W. S. Wang, “Nickel-indiffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Tech. Lett., vol. 8, pp. 548-550, 1996.
[9] 黃文宏,「鎵擴散式鈮酸鋰光波導特性之研究」,國立台灣大學光電工程學研究所博士論文,2008年
[10] K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett., vol. 6, pp. 228-229, 1965
[11] C. L. Lee and C. L. Lu, “CF4 plasma etching on LiNbO3,” Appl. Phys. Lett., vol. 35, pp. 756-758, 1979.
[12] Y. Ohmachi and J. Noda, “Electro-optic light modulator with branched ridge waveguide,” Appl. Phys. Lett., vol. 27, pp. 544-546, 1975.
[13] I. P. Kaminow and V. Ramaswamy, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett., vol. 24, pp. 622-624, 1974.
[14] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Tech., vol. 10, pp. 1606-1609, 1992.
[15] 張家豪,「以伽瑪射線及質子交換濕式蝕刻法研製脊型鈮酸鋰光波導」,國立台灣大學電子工程學研究所碩士論文,2009年
[16] W. H. Hsu, K. C. Lin, J. Y. Li, Y. S. Wu, and W. S. Wang, “Polarization splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Sel. Topics Quantum Electron, vol. 11, no. 1, pp. 271-277 Jan./Feb. 2005.
[17] R. S. Cheng, T. J. Wang, and W. S. Wang, “Wet-etched ridge waveguides in y-cut lithium niobate,” J. Lightwave Tech., vol. 15, pp.1880-1887, 1997.
[18] S.J. Chang, C.L.Tsai, Y. B. Lin, J. F. Liu, and W. S. Wang, “Improved electrooptic modulator with ridge structure in X-cut LiNbO3,” J. Lightwave Tech., vol. 17, pp. 843-847,1999.
[19] M. N. Armenise, Fabrication techniques of lithium niobate waveguides,”IEEE Proceedings, vol. 135, pp.85-91, 1988.
[20] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication of strip load outdiffusion guides on lithium niobate substrate,”Microwave and Optical Technol. Lett., vol. 5, no.7, pp.309-313, 1992.
[21] C.S. Lau, S.F. Liu, P. K. Wei, and W.S. Wang,”A Mach-Zehnder interferometer made of strip-loaded outdiffusion guide, Microwave and Optical Technol. Lett. Vol. 12, pp. 611-613, 1992.
[22] V. M. N. Passaro, M. N. Armenise, D. Nedheva, and E. Y. B. Pun,”LiNbO3 optical waveguides formed in a new proton source”J. Lightwave Tech., vol.20, pp.71-77, No.1, 2002.
[23] 魏培坤,「金屬擴散式鈮酸鋰光波導之製造及應用」,國立台灣大學電機工程研究所博士論文,1994年
[24] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang,“Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides,”IEEE Photon. Tech. Lett., vol. 4 , No.8, pp. 872-875,1992.
[25] R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,”Appl. Phys. Lett., vol. 25, no. 8, pp.458-460, Oct.1974.
[26] B. Herrerros and G. Lifante, “LiNbO3 optical waveguides by Zn diffusion from vapor phase,” Appl. Phys. Lett., vol.66, no.20, pp. 1449-1451, 1995.
[27] J. J. Aubert, M. Couchaud, and C. Calvat,“Characterization of lithium niboate by γ-ray diffraction,”J. of Crystal Growth,vol.79,pp.530-533, 1986.
[28] 賴政治,「伽瑪射線對光波導特性之研究」,國立台灣大學光電工程學研究所博士論文,2006年
[29] K. Noguchi, O. Mitomi, K. Kawano, and M. Yanagibashi, “Highly efficient 40GHz bandwidth Ti- LiNbO3 optical modulator employing ridge structure, ” IEEE Photon. Technol. Lett., vol. 5, pp. 52-54, 1993.
[30] S. J. Al-Bader, “Application of etched grooves in integrated-optics channel isolation,” IEEE Photon Technol. Lett., vol. 8, pp. 1044-1046, 1996.
[31] H. Haga, M. Izutsu, and T. Sueta, “LiNbO3 traveling-wave length modulator/switch with an etched groove,” IEEE J. Quantum Electron., vol. 6, pp. 902-906, 1986.
[32] A. Sugita, K. Jingui, N. Takato, K . Katoh, and M. Kawachi, “Bridge-suspended silica-waveguide thermo-optic phase shifter and its application to Mach-Zehnder type optical switch,” IEEE Trans. IEICE E. Vol. 73, pp. 105-108, 1990.
[33] I. P. Kaminow and V. Ramaswamy, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett., vol. 27, pp. 622-624, 1975.
[34] Y. Ohmachi, and J. Noda, “Electro-optic light modulator with branched ridge waveguide,” Appl. Phys. Lett., vol. 27, pp.544- 546,1975.
[35] C. L. Lee and C. L. Lu,“CF4 plasma etching on LiNbO3 ,” Appl. Phys. Lett., vol. 35, pp.756-758, 1979.
[36] J. L. Jackel, R. E. Howard, E. L. Hu, and S. P. Lyman, “Reactive ion etching of LiNbO3 ,” Appl. Phys. Lett., vol. 38, pp. 907-909, 1981.
[37] N. Niizeki, T. Yamada, and H. Toyota, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” J. J. Appl. Phys., vol. 6, No. 3, pp. 318-327,1967.
[38] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique, ” J. Lightwave Tech., vol. 10, pp. 1606-1609, 1992.
[39] 丁天倫,「改良式鈮酸鋰脊形光波導之特性與應用」,國立台灣大學光電工程學研究所博士論文,2006年
[40] Y. N. Korkishko,V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structure and optical properties of proton-exchanged waveguides on z-cut lithium niobate, ”Appl. Opt., vol. 35, No. 36, pp. 7056-7060, 1996.
[41] N. Goto and G. L. Yip, “Characterization of proton-exchange and annealed LiNbO3 waveguides with pyrophosphoric acid,” Appl. Opt., vol. 28, No. 1, pp.60-65, 1989.
[42] K. Yamamoto and T. Taniuchi, “Characteristics of pyrophosphoric acid proton-exchanged waveguides in LiNbO3,” J. Appl. Phys., vol. 70, No. 11, pp. 6663-6668, 1991
[43] E. Y. B. Pun, S. A. Zhao, and P. S. Chung, “Proton-exchange LiNbO3 optical waveguides using stearic acid,” IEEE Photon. Tech. Lett., vol. 3, No.11, pp. 1006-1008, 1991.
[44] Y. S. Son, H. J. Lee, Y. K. Jhee, S. Y. Shin, and B. G. Kim, “Fabrication of LiNbO3 channel waveguides using water,” IEEE Photon. Tech. Lett., vol. 4, No.5, pp. 457-459, 1992.
[45] I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, “Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,” A. Phys. Lett., vol 74, pp. 1487-1488, 1999.
[46] K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett., vol. 6, pp. 228-229, 1965
[47] T.-J. Wang, C.-F. Huang, W.-S. Wang, and P.-K. Wei, “A novel wet-etching method using electric-field-assisted proton exchange in LiNbO3,“ J. Lightwave Tech., vol.22, pp.1764-1771, 2004.
[48] T.-L. Ting, L.-Y. Chen, and W.-S. Wang, “A novel wet-etching method using joint proton source in LiNbO3,” IEEE Photon. Tech. Lett., vol.18, pp.568-570, 2006.
[49] Y. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Sel. Topics Quantum Electron., vol. 2, no. 2, pp. 187-196, 1996.
[50] 蔡英哲,「伽瑪射線照射鈮酸鋰脊形馬赫任德電光調變器之研製」,國立台灣大學電子工程學研究所碩士論文,2010年
[51] 許佩蘭,「脊形電光調變器之設計與製作」,國立台灣大學電子工程學研究所碩士論文,,2006年
[52] R. C. Alferness, “Waveguide eletrooptic modulator,” IEEE Trans. Microwave Theory Tech., vol. MTT-30, No. 12, pp. 20776-2079, Dec.1993.
[53] 陳亮吟,「紫外光照射高分子光波導元件之研製」, 國立台灣大學光電工程研究所碩士論文,2007年
[54] S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Rivere, “Wavelength dispersion of Ti-induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Tech., vol.5(5), pp.700-708, May 1987.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38140-
dc.description.abstract本論文探討伽瑪射線照射鈮酸鋰基板製作脊形光波導,藉以改善脊形外觀結構,並研究其對光場及電光調變特性的影響。
在脊形結構製作方面,使用純苯甲酸及含有已二酸之混合酸兩種不同質子酸源,在相同條件下利用氫氟酸與硝酸之混合酸進行溼式蝕刻,以完成脊形結構。同時,亦在相同的伽瑪射線照射劑量下,比較不同質子酸對脊形結構所造成的影響,以及比較不同的伽瑪射線照射劑量對脊形外觀的變化。實驗數據顯示採用伽瑪射線照射162.5krad且以純苯甲酸作為質子酸源之組合,在蝕刻8小時後,可獲得脊形的深度為4.472μm,深寬比為1.3。
在元件應用上,以製作脊形結構方向耦合器為例,實驗結果顯示經伽瑪射線照射過之元件可縮短耦合長度8.2%,表示耦合效應因伽瑪射線照射而增強。在電光調變部份顯示其半波電壓降低37.94%,訊熄比提高46.54%。證實伽瑪射線可有助於鈮酸鋰積體光學元件之改善。
zh_TW
dc.description.abstractIn this thesis, ridge waveguides are fabricated by using proton exchange and wet etching in gamma-ray irradiated lithium niobate(LiNbO3). Experimental results show the depths and aspect ratios of ridge structures are all improved, which gives rise to optical fields of higher aspect ratios and electro-optic modulators with better characteristics.
The ridge structures are obtained by proton exchange for 8 hr with various acid sources and etched for 8 hr with a mixture of hydrofluoric acid and nitric acid. The deepest depth and the aspect ratio of ridge structure are 4.472μm and 1.3 when the dosage of gamma-ray irradiation is 162.5krad.
Moreover, the coupling length is shortened by 8.2% when a ridge-type directional coupler is fabricated with gamma-ray irradiated lithium niobate, which indicates that coupling effect is enhanced due to gamma-ray irradiation. And the half-wave voltage is decreased by 37.94%, and the extinction ratio is increased by 46.54%. Thus, it shows that gamma-ray irradiation is advantageous for the improvement of lithium niobate integrated optical waveguides.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:26:56Z (GMT). No. of bitstreams: 1
ntu-100-R98941015-1.pdf: 3282960 bytes, checksum: 0d7c8f1fcaf9321364ed563171909f7b (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要--------------------------------------------------I
英文摘要--------------------------------------------------II
目錄--------------------------------------------------------III
附圖目錄--------------------------------------------------V
附表目錄--------------------------------------------------VII
第一章 緒論------------------------------------------1
1-1 研究背景------------------------------------1
1-2 研究動機------------------------------------4
1-3 內容簡介------------------------------------6
第二章 材料簡介及波導特性--------------------7
2-1 研究目標與架構---------------------------7
2-2 鈮酸鋰簡介---------------------------------7
2-2-1 材料特性------------------------------------7
2-2-2 光學特性------------------------------------10
2-2-3 光波導特性---------------------------------11
2-3 伽瑪射線簡介------------------------------14
2-4 伽瑪射線對光波導之影響--------------21
第三章 脊形光波導之製作與特性--------------24
3-1 脊形光波導---------------------------------24
3-2 蝕刻法與質子交換原理簡介-----------25
3-2-1 常見的蝕刻方法---------------------------25
3-2-2 質子交換------------------------------------26
3-2-3 質子交換溼式蝕刻法--------------------29
3-3 脊形結構製作及結果--------------------30
3-3-1 製作流程------------------------------------30
3-3-2 實驗結果討論-----------------------------35
3-4 影響重疊積分值之因素----------------45
3-4-1 重疊積分值--------------------------------45
3-4-2 脊形寬度-----------------------------------45
3-4-3 脊形傾斜角度-----------------------------46
3-4-4 脊形深度-----------------------------------46
3-4-5 脊形的電極設計--------------------------47
第四章 方向耦合器之設計及製作-------------49
4-1 光波導耦合原理--------------------------49
4-2 電光調變器原理簡介--------------------53
4-3 元件設計------------------------------------58
4-4 元件製作過程-----------------------------60
4-4-1 晶片切割-----------------------------------62
4-4-2 伽瑪射線照射-----------------------------62
4-4-3 微影術--------------------------------------63
4-4-4 真空鍍膜-----------------------------------64
4-4-5 掀離法與蝕刻法--------------------------67
4-4-6 質子交換-----------------------------------69
4-4-7 濕式蝕刻-----------------------------------70
4-4-8 高溫擴散-----------------------------------70
4-4-9 研磨拋光-----------------------------------71
第五章 量測結果與討論--------------------------72
5-1 量測系統架構-----------------------------72
5-2 光場模態之量測--------------------------74
5-3 耦合長度之量測--------------------------77
5-4 調變訊號量測-----------------------------82
第六章 結論與未來展望--------------------------84
6-1 結論------------------------------------------84
6-2 未來展望------------------------------------87
附錄A-------------------------------------------------------88
A-1 脊形蝕刻深度與伽瑪照射源使用時間關係88
參考文獻---------------------------------------------------89
中英文對照表---------------------------------------------96
dc.language.isozh-TW
dc.subject訊熄比zh_TW
dc.subject輻射吸收劑量zh_TW
dc.subject己二酸zh_TW
dc.subject外觀比zh_TW
dc.subject苯甲酸zh_TW
dc.subject雙軸晶體zh_TW
dc.subject光耦合器zh_TW
dc.subject耦合效應zh_TW
dc.subject耦合長度zh_TW
dc.subject方向耦合器zh_TW
dc.subject電光係數zh_TW
dc.subject電光調變器zh_TW
dc.subject電光效應zh_TW
dc.subject鈦擴散式光波導zh_TW
dc.subject鉭zh_TW
dc.subject鈦zh_TW
dc.subject脊形結構zh_TW
dc.subject脊形側壁zh_TW
dc.subject脊形深度zh_TW
dc.subject放射性活度zh_TW
dc.subject質子交換zh_TW
dc.subject重疊積分值zh_TW
dc.subject脊形光波導zh_TW
dc.subject光場zh_TW
dc.subject鈮酸鋰zh_TW
dc.subject苯甲酸鋰zh_TW
dc.subject半波電壓zh_TW
dc.subject伽瑪射線zh_TW
dc.subjectTi-indiffused optical waveguideen
dc.subjectelectro-optic effecten
dc.subjectelectro-optical modulatoren
dc.subjectextinction ratioen
dc.subjectgamma rayen
dc.subjecthalf-wave voltageen
dc.subjectlithium benzoateen
dc.subjectoptical fielden
dc.subjectoptical ridge waveguideen
dc.subjectoverlap integralen
dc.subjectproton exchangeen
dc.subjectPEen
dc.subjectradioactivityen
dc.subjectridge depthen
dc.subjectridge sidewallen
dc.subjectridge structureen
dc.subjecttitaniumen
dc.subjecttantalumen
dc.subjectabsorbed doseen
dc.subjectabsorbed doseen
dc.subjectaspect ratioen
dc.subjectbenzoic aciden
dc.subjectbiaxial crystalen
dc.subjectcoupleren
dc.subjectcoupling effecten
dc.subjectcoupling lengthen
dc.subjectdirectional coupleren
dc.subjectelectro-optical coefficienten
dc.title在伽瑪射線照射鈮酸鋰基板上研製脊形方向耦合器zh_TW
dc.titleDesign and Fabrication of Ridge-type Directional Coupler on Gamma-ray Irradiated Lithium Niobate Substrateen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡振國,彭隆瀚,王子建
dc.subject.keyword輻射吸收劑量,己二酸,外觀比,苯甲酸,雙軸晶體,光耦合器,耦合效應,耦合長度,方向耦合器,電光係數,電光效應,電光調變器,訊熄比,伽瑪射線,半波電壓,苯甲酸鋰,鈮酸鋰,光場,脊形光波導,重疊積分值,質子交換,放射性活度,脊形深度,脊形側壁,脊形結構,鈦,鉭,鈦擴散式光波導,zh_TW
dc.subject.keywordabsorbed dose,absorbed dose,aspect ratio,benzoic acid,biaxial crystal,coupler,coupling effect,coupling length,directional coupler,electro-optical coefficient,electro-optic effect,electro-optical modulator,extinction ratio,gamma ray,half-wave voltage,lithium benzoate,optical field,optical ridge waveguide,overlap integral,proton exchange,PE,radioactivity,ridge depth,ridge sidewall,ridge structure,titanium,tantalum,Ti-indiffused optical waveguide,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2011-07-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved