Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38115
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳紀聖(Jeffrey C. -S. Wu)
dc.contributor.authorYu-Ting Chengen
dc.contributor.author鄭宇廷zh_TW
dc.date.accessioned2021-06-13T16:26:35Z-
dc.date.available2005-07-20
dc.date.copyright2005-07-20
dc.date.issued2005
dc.date.submitted2005-07-15
dc.identifier.citation[1] E. M. Levin, C. R. Robbins, and H. F. McMurdie, Phase Diagrams for Ceramists, vol. 76, The American Ceramic Society, inc., 1975, p. 4150.
[2] U. Diebold, The Surface Science of Titanium Dioxide. Surface Science Reports, 48 (2003) 53-229.
[3] A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38.
[4] R. Nakamura, A. Imanishi, K. Murakoshi, and Y. Nakato, In Situ FTIR Studies of Primary Intermediates of Photocatalytic Reactions on Nanocrystalline TiO2 Films in Contact with Aqueous Solutions, Journal of The American Chemical Society, 125 (2003) 7443-7450.
[5] R. Nakamura and Y. Nakata, Primary Intermediates of Oxygen Photoevolution Reaction on TiO2 (Rutile) Particles, Revealed by in Situ FTIR Absorption and Photoluminescence Measurements, Journal of The American Chemical Society, 126 (2004) 1290-1298.
[6] D. C. Hurum, A. G. Agrios, and K. A. Gray; T. Rajh and M. C. Thurnauer, Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR, The Journal of Physical Chemistry B, 107 (2003) 4545-4549.
[7] S. H. Szczepankiewicz, A. J. Colussi, and M. R. Hoffmann, Infrared Spectra of Photoinduced Species on Hydroxylated Titania Surfaces, The Journal of Physical Chemistry B, 104 (2000) 9842-9850.
[8] G. Busca, H. Saussey, O. Saur, J. C. Lavalley, and V. Lorenzelli, FT-IR CHARACTGERIZATION OF THE SURFACE ACIDITY OF DIFFERENT TITANIUM DIOXIDE ANATASE PREPARATIONS, Applied Catalysis, 14 (1985) 245-260.
[9] J. M. Watson and U. S. Ozkan, Role of NH3 as an intermediate in reduction of NO with CH4 over sol-gel Pd catalysts on TiO2, Journal of molecular catalysis A: Chemical, 192 (2003) 79-91.
[10] J. M. Coronado, S. Kataoka, I. T.-Tejedor, and M. A. Anderson, Dynamic phenomena during the photocatalytic oxidation of ethanol and acetone over nanocrystalline TiO2: simultaneous FTIR analysis of gas and surface species, Journal of Catalysis. 219 (2003) 219-230.
[11] W. Xu, D. Raftery, and J. S. Francisco, Effect of Irradiation Sources and Oxygen Concentration on the Photocatalytic Oxidation of 2-Propanol and Acetone Studied by in Situ FTIR, The Journal of Physical Chemistry B, 107 (2003) 4537-4544.
[12] W. –C. Wu, C. –C. Chuang, and J. –L. Lin, Bonding Geometry and Reactivity of Methoxy and Ethoxy Groups Adsorbed on Powdered TiO2, The Journal of Physical Chemistry B, 104 (2000) 8719.
[13] B. J. Lee, M. C. Kuo, and S. H. Chien, In situ FT-IR studies of NO decomposition on Pt/TiO2 catalyst under UV irradiation, Research on chemical intermediates, 29 (2003) 817-826.
[14] A. A. Davydov, Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides (C. H. Rochester Ed.), John Wiley and Sons, Chichester, New York, 1990, p. 56-58; 63-64.
[15] K. Hadjiivanov, P. Conception and H. Knozinger, Analysis of oxidation states of vanadium in vanadia-titania catalysts by the IR spectra of adsorbed NO, Topics in Catalysis, 11/12 (2003) 123-130.
[16] K. Hadjiivanov and H. Knozinger, Species formed after NO adsorption and NO + O2 co-adsorption on TiO2: an FTIR spectroscopic study, Physical chemistry chemical physics, 2 (2000) 2803-2806.
[17] G. Ramis, G. Busca, V. Lorenzelli, and P. Rorzatti, Fourier Transform In rared Study of the adsorption and Coadsorption of Nitrix Oxide, Nitrogen Dioxide and Ammonia on TiO2 Anatase, Applied Catalysis, 64 (1990) 243-257.
[18] K. I. Hadjiivanov, Identification of Ceutral and Charged NxOy Surface Species by IR Spectroscopy, Catalysis Reviews: Science and Engineering, 42 (2000) 71-144.
[19] I. Nakamura, S. Sugihara, and K. Takeuchi, Mechanism for NO Photooxidation over the Oxygen-Deficient TiO2 Powder under Visible Light Irradiation, Chemistry Letters, 11 (2000) 1276-1277.
[20] B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3th edition, Prentice Hall, New Jersey, p. 92, 2001.
[21] W. W. Wendlandt and H. G. Hecht, Reflectance Spectroscop, Wiley, New York, 1966, p. 62
[22] J. R. Anderson and K. C. Pratt, Introduction to Characterization and Testing of Catalysts, Academic Press, Florida, 1985, p. 416-420.
[23] B. George and P. Mclntyre, Analytical Chemistry by Open Learning (紅外線光譜分析法) (翁瑞裕 編譯, 曹君曼 校訂), John Wiley and Sons, Business and Technology Education council (高立圖書有限公司, 台北縣), p. 102.
[24] HARRIC Scientific Corporation, The Praying MantisTM, User’s Manual, Harrick Scientific Corporation, NY U.S., 2003, p. 9.
[25] B. George and P. Mclntyre, Analytical Chemistry by Open Learning (紅外線光譜分析法) (翁瑞裕 編譯, 曹君曼 校訂), John Wiley and Sons, Business and Technology Education council (高立圖書有限公司, 台北縣), p. 103.
[26] B. George and P. Mclntyre, Analytical Chemistry by Open Learning (紅外線光譜分析法) (翁瑞裕 編譯, 曹君曼 校訂), John Wiley and Sons, Business and Technology Education council (高立圖書有限公司, 台北縣), p. 104.
[27] HARRIC Scientific Corporation, The Praying MantisTM, User’s Manual, Harrick Scientific Corporation, NY U.S., 2003, p. 18.
[28] J. Muhlebach, K. Muller, and G. Schwarzenbach, The Peroxo Complexes of Titanium, Inorganic Chemistry, 9 (1970) 2381-2390.
[29] K. Hadjiivanov, V. Bushev, M. Kantcheva, and D. Klissurski, Infrared Spectroscopy Study of the Species Arising during NO2 Adsorption on TiO2 (Anatase) Langmuir, 10 (1994) 464-471.
[30] A. A. Davydov, Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides (C. H. Rochester Ed.), John Wiley and Sons, Chichester, New York, 1990, p. 33-35.
[31] A. A. Davydov, Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides (C. H. Rochester Ed.), John Wiley and Sons, Chichester, New York, 1990, p. 6-7.
[32] B. George and P. Mclntyre, Analytical Chemistry by Open Learning (紅外線光譜分析法) (翁瑞裕 編譯, 曹君曼 校訂), John Wiley and Sons, Business and Technology Education council (高立圖書有限公司, 台北縣), p. 189.
[33] A. A. Davydov, Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides (C. H. Rochester Ed.), John Wiley and Sons, Chichester, New York, 1990, p. 25.
[34] J. Zhang, T. Ayusawa, M. Minagawa, K. Kinugawa, H. Yamashita, M. Matsuoka and M. Anpo, Investigations of TiO2 Photocatalysts for the Decomposition of NO in the Flow System, Journal of Catalysis, 198 (2001) 1-8.
[35] C.-H. Lin and H. Bai, Adsorption Behavior of Moisture over a Vanadia/Titania Catalyst: A Study for the Selective Catalytic Reduction Process, Industrial and Engineering Chemistry Research, 43 (2004) 5983-5988.
[36] G. Ramis, G. Busca, F. Bregani, and P. Forzatti, Fourier Transform-Infrared Study of the Adsorption and Coadsorption of Nitric Oxide, Nitrogen Dioxide and Ammonia on Vanadia-Titania and Mechanism of Selective Catalytic Reduction, Applied Catalysis, 64 (1990) 259-278.
[37] C.-H Lin and H. Bai, Surface acidity over vanadia/titania catalyst in the selective catalytic reduction for NO removal-in situ DRIFTS study, Applied Catalysis B: Environmental, 42 (2003) 279-287.
[38] M. S. –Marth, A. Wokaun, H. E. C. –Hyde, and A. Baiker, Surface Structure of Crystalline and Amorphous Chromia Catalysts for the Selective Catalytic Reduction of Nitric Oxide, Journal of Catalysis, 133(1992) 415-430.
[39] U. Scharf, H. Schneider, A. Baiker, and A. Wokaun, Chromia Supportted on Titania III. Structure and Spectroscopic Properties, Journal of Catalysis, 145 (1994) 464-478.
[40] M. M. Kantcheva, V. Ph. Bushev and K. I. Hadjiivanov, Nitrogen Dioxide Adsorption on Deuteroxylated Titania (Anatase), Journal of the Chemical Society. Faraday transactions, 88 (1992) 3087-3089.
[41] D. V. Pozdnyakov and V. N. Fillmonov, USE OF IRSPECTROSCOPY TO INVESTIGATE CHEMISORPTION OF NITRIC OXIDE AND NITROGEN DIOXIDE ON METALLIC OXIDES, Kinetics and Catalysis, 14 (1973) 655-660.
[42] T. Ohno, Y. Masaki, S. Hirayama, and M. Matsumura, TiO2-Photocatalyzed Epoxidation of 1-Decene by H2O2 under Visible Light, Journal of Catalysis, 204 (2001) 163-168.
[43] G. Munuera, A. R. Gonzalez-Elipe, A. Fernandez, P. Malet and J. P. Espinos, Spectroscopic Characterisation and Photochemical Behaviour of a Titanium Hydroxyperoxo Compound, Journal of the Chemical Society. Faraday transactions. I, 85 (1989) 1279-1290.
[44] R. D. Jones, D. A. Summerville, and F. Basolo, Synthetic Oxygen Carriers Related to Biological Systems, Chemical Reviews, 79 (1979) 139-179.
[45] M. Kantcheva, Identification, Stability, and Reactivity of NOx Species Adsorbed on Titania-Supported Manganese Catalysts, Journal of Catalysis, 204 (2001) 479-494.
[46] A. A. Davydov, Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides (C. H. Rochester Ed.), John Wiley and Sons, Chichester, New York, 1990, p. 64-69.
[47] Y. Lokhov and A. Davydov, STUDY OF THE STATE OF TRANSITION-METAL CATIONS ON CATALYST SURFACES BY IR SPECTROSCOPY OF ADSORBED TEST MOLECULES (CO, NO), Kinetics and Catalysis, 21 (1980) 943-946.
[48] J. Valyon and W. K. Hall, Studies of the Surface Species Formed from NO on Copper Zeolites, The Journal of physical chemistry, 97 (1993) 1204-1212.
[49] A. Davydov and A. Budneva, IR SPECTRA OF CO AND NO ADSORBED ON CuO, Reaction kinetics and catalysis letters, 25 (1984) 121-124.
[50] A. W. Aylor, S. C. Larsen, J. A. Reimer, and A. T. Bell, An Infrared Study of NO Decomposition over Cu-ZSM-5, Journal of Catalysis, 157 (1995) 592-602.
[51] R. Nakamura and S. Sato, Oxygen Species Active for Photooxidation of n-Decane over TiO2 Surface, The Journal of Physical Chemistry B, 106 (2002) 5893-5896.
[52] I. –H. Tseng, Jeffrey C. –S. Wu, and H. -Y. Chou, Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction, Journal of Catalysis, 221 (2004) 432-440.
[53] N. –Y. Topsoe, Characterization of the Nature of Surface Sites on Vanadia-Titania Catalysts by FTIR, Journal of Catalysis, 128 (1991) 499-511.
[54] A. A. Davydov, Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides (C. H. Rochester Ed.), John Wiley and Sons, Chichester, New York, 1990, p. 8-24.
[55] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Marquette University, Milwaukee, Wisconsin, 1969, p. 78-102.
[56] 潘建呈, 摻雜鉻之TiO2-xNx奈米可見光光觸媒, 國立台灣大學碩士學位論文, 台北, 2004, p. 103.
[57] A. Fujishima, T. N. Rao and D. A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1 (2000) 1-21.
[58] Thermo Electron Corporation, Your Complete Sample Catalog for FT-NIR and FT-Raman Spectrometers, Thermo Electron Corporation, Madison, Wisconsin USA, 2002, p. 129.
[59] WATLOW Corporation, Series 988 User’s Manual, WATLOW Corporation, Winona, Minnesota USA, 2002, p. A.4.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38115-
dc.description.abstract本研究運用傅立葉轉換紅外線光譜儀,研究在紫外線照射下純二氧化鈦以及負載過渡金屬的二氧化鈦對於一氧化氮的光觸媒催化反應。利用改良式溶膠凝膠法水解鈦的醇氧化物製備二氧化鈦以及負載銅、釩、鉻金屬之二氧化鈦。在500°C 通入空氣進行前處理之後,觸媒表面偵測到大量過氧化物以及氫氧基。通入一氧化氮氣體後,發現一氧化氮會移除氫氧基、過氧化物,或過渡金屬與氧分子之間的雙鍵鍵結,並以雙齒亞硝酸基或硝酸基的型式吸附在觸媒表面。此外,一氧化氮也會以亞硝醯基的型式吸附在負載之過渡金屬離子上。觸媒在紫外光照射下受激發形成的電洞將過氧化物氧化成超氧化物;此超氧化物會將雙齒亞硝酸基氧化成硝酸基。當亞硝醯基存在於表面時,會因為亞硝醯基的優選氧化使得亞硝酸基的氧化受到抑制。
在熱穩定性測試中,400°C的高溫仍然無法移除雙齒硝酸基,且吸附在二氧化鈦的氫氧基因為與硝酸產生偶合而不受高溫影響。然而,氫氧基與雙齒亞硝酸基無法進行偶合,故氫氧基的熱穩定性表現與未吸附一氧化氮的二氧化鈦觸媒相同。再者,研究同時發現一氧化氮可再次吸附在存在有雙齒亞硝酸基及硝酸基的二氧化鈦表面。在光穩定性測試中,發現亞硝酸基的氧化是由觸媒照光後產生的中間物觸發進行,而非光觸媒受光反應後的產物對亞硝酸基進行氧化形成硝酸基。X光繞射分析、紫外光–可見光光譜分析證明觸媒的結構,以及對紫外光吸收的能力不會受高溫處理和一氧化氮的光觸媒催化反應影響。
由傅立葉轉換紅外線光譜儀的結果,可推測出一氧化氮在純二氧化鈦和負載過渡金屬的二氧化鈦上,進行光觸媒催化反應的可能機制。
zh_TW
dc.description.abstractPhotocatalytic NO oxidation on TiO2 and transition metal-loaded TiO2 (M/TiO2) catalysts under UV irradiation was studied using in situ FT-IR spectroscopy. TiO2 and M/TiO2 catalysts were prepared by sol-gel method via controlled hydrolysis of titanium (IV) butoxide. Copper, vanadium or chromium was loaded onto TiO2 during sol-gel procedure. After treated at 500°C under air flow, a large amount of surface peroxo species and OH groups were detected on the TiO2 and M/TiO2 catalysts. Nitric oxides (NO) can be adsorbed on TiO2 and M/TiO2 in the form of bidentate nitrites, or nitrates via removing OH groups, peroxo species or M=O bonds. In addition, NO can also be adsorbed on Mn+ in the form of nitrosyls. Under UV irradiation, bidentate nitrites were oxidized to monodentate or bidentate nitrates. This transformation was probably triggered by superoxo species which were oxidized from peroxo species via photogenegrated holes. The existence of nitrosyls caused the inhibition of oxidation from nitrites to nitrates because of primary oxidation on nitrosyls. Thermal stability tests showed that even the temperatures were up to 400°C, bidentate nitrates still remained on TiO2 surface. It also showed that OH groups were coupled with nitrates so that the OH groups were not influenced even up to 400°C. However, for bidentate nitrite, it was not coupled with OH groups so the OH groups were influenced at high temperatures. In addition, further NO adsorption and photocatalytic NO oxidation were allowed on nitrite-adsorbed TiO2 and nitrate-adsorbed on TiO2. Photo stability tests evidently showed that it was photogenerated intermediates, not photocatalytic products that involved in the oxidation from nitrites to nitrates. XRD and UV-Visible tests showed that the structures and the abilities of absorbing UV light were not influenced by high temperature treatment and photocatalytic NO oxidation.
Based on the FT-IR results, a possible mechanism was proposed for the photocatalytic NO oxidation on TiO2 and M/TiO2.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:26:35Z (GMT). No. of bitstreams: 1
ntu-94-R92524016-1.pdf: 5194559 bytes, checksum: 1f1ba393bccb50326b084e214e3babe9 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents誌謝 I
Abstract (English) II
Abstract (Traditional Chinese) III
Contents IV
Contents for Figures VI
Contents for Tables X
Contents for Schemes XI
1. Introduction 1
1.1 Introduction to TiO2 1
1.2 Motivation 3
2. Paper Review 4
2.1 Photocatalytic Acvity of TiO2 and Its FT-IR Investigation 4
2.2 Photocatalytic Reaction on TiO2 and Its FT-IR Investigation 7
2.3 Reduction of NO on Catalysts and Its FT-IR Investigation 12
3. Experimental Section 18
3.1 Materials 18
3.2 Preparation of Photocatalysts 18
3.3 Characteristic Analyses of Photocatalysts 21
3.3.1 X-ray Diffraction 21
3.3.2 UV-Visible Diffuse Reflectance Spectroscopy 22
3.3.3 Infrared Fourier-Transform (FT-IR) Spectroscopy 23
3.4 In Situ FT-IR Photoreaction System 26
3.4.1 Reaction System 26
3.4.2 Photoreactor 27
3.4.3 In Situ Photocatalytic Reaction of NO Gas 28
4. Results 30
4.1 In situ FT-IR Study of Photocatalytic NO Reaction 30
4.1.1 Pretreatment 30
4.1.2 Photocatalytic NO Reaction 37
4.1.2.1 Photocatalytic NO Reaction on TiO2 37
4.1.2.2 Photocatalytic NO Reaction on Cu/TiO2 44
4.1.2.3 Photocatalytic NO Reaction on V/TiO2 49
4.1.2.4 Photocatalytic NO Reaction on Cr/TiO2 54
4.1.2.5 Photocatalytic NO Reaction on P25 59
4.1.2.6 Summary 63
4.1.3 Thermal and Photo Stability of Surface Peroxo Complexes 66
4.1.4 Thermal Stability of Bidentate Nitrite 72
4.1.5 Thermal Stability of Monodentate and Bidentate Nitrate 75
4.2 X-ray Diffraction 79
4.3 UV-Visible 83
5. Discussion 85
5.1 Photocatalytic NO Reaction on TiO2 85
5.2 Photocatalytic NO Reaction on 2wt%Cu/TiO2 91
5.3 Photocatalytic NO Reaction on 1.9wt%V/TiO2 and 0.65wt%Cr/TiO2 93
5.4 Photocatalytic NO Reaction on P25 96
5.5 Summary 96
6. Conclusion 98
Acknowledgments 99
References 100
Appendices 106
Appendix I. Properties of Useful IR Material 106
Appendix II. Temperature ranges of some commercial thermocouple 110
Appendix III. Structures of Surface Species 111
Appendix IV Photocatalytic NO Reaction on γ-Al2O3 113
個人小傳 115
dc.language.isoen
dc.subject一氧化氮zh_TW
dc.subject二氧化鈦zh_TW
dc.subject紅外線zh_TW
dc.subject光催化zh_TW
dc.subjectFTIRen
dc.subjectnitric oxideen
dc.subjectphotocatalyticen
dc.subjectTiO2en
dc.title原位紅外線偵測一氧化氮在光觸媒上之光催化氧化反應zh_TW
dc.titleIn situ FT-IR Studies of Photocatalytic NO Oxidation on Photocatalystsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊顯成(Steven S.C.Chuang),萬本儒(Ben-Zu Wan)
dc.subject.keyword二氧化鈦,紅外線,光催化,一氧化氮,zh_TW
dc.subject.keywordTiO2,FTIR,photocatalytic,nitric oxide,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2005-07-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
5.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved