請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38096完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊樹文 | |
| dc.contributor.author | I-Ming Tsai | en |
| dc.contributor.author | 蔡佾明 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:26:20Z | - |
| dc.date.available | 2014-07-27 | |
| dc.date.copyright | 2011-07-27 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-19 | |
| dc.identifier.citation | [1] L. Kauffman. On knots, Annals of Mathematical studies No. 115, Princeton University Press (1987), 421-426.
[2] D. Bar-Natan. On Khovanov’s categorification of the Jones polynomial, Algebraic and Geometric Topology (2002), 5-12. [3] M. Khovanov. A categorification of the Jones polynomial, Duke Math. Journal (2000). [4] D. Bar-Natan. Khovanov’s homology for tangles and cobordisms, Geometry and Topology (2006), 5-7. [5] E. S. Lee. An endomorphism of the Khovanov invariant, Advances in Mathematics 197 (2005), 555-562. [6] D. B. West. Introduction to graph theory, 2nd ed. Prentice Hall (2001), 233-235. [7] R. Diestel. Graph Theory, GTM 173 Springer-Verlag (1996). [8] D. Rolfsen. Knots and links, Publish or Perish, Mathematical Lecture Series 7 (1976), 391. [9] D. Husemoller, Fibre bundles, McGraw-Hill series in higher mathematics (1966), 260-261. [10] J. S. Carter and M. Saito. Knotted Surfaces and their diagrams, Mathematical Surveys and Monographs Vol. 55 (1998), 14-18. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38096 | - |
| dc.description.abstract | 在計算結的不變量時,Khovanov發展出了一套理論將結與鏈復形結合起來,稱作Khovanov homology。他所得到的結果是Jones Polynomial可以用Khovanov同調群表示出來。本論文要證明的是當兩個連通結的Khovanov鏈復形為同構時,這兩個結是相等的。首先我們用Bar-Natan論文裡的符號把結轉換成另一種圖形,叫做圖表示法(Graph Presentation)。之後再利用鏈復形cobordism的特性去說明如果它們為同構,那麼這兩個結的每個局部結構一定得保持相同,進一步說明它們是同樣的結。 | zh_TW |
| dc.description.abstract | When calculating link invariants, Khovanov has developed a theory which turns the link diagram into a chain complex of direct sum of graded vector spaces defined from the topological quantum field theory (TQFT), then assigns a suitable differential mapping to compute the homology of the chain complex. The result turns out to be related to the Jones polynomial of the link. First we assign each link a new diagram called the graph presentation by replacing the overcrossings of the link by edges, the circles in the Khovaonv chain complexes as vertices. It will help us study the structure of the chain complexes of the link. From Bar Natan’s papers, we use the mapping cobordisms of the chain complex to show that any two link diagrams which are isomorphic by Khovanov chain complexes, then the link diagrams are identical. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:26:20Z (GMT). No. of bitstreams: 1 ntu-100-R98221027-1.pdf: 357414 bytes, checksum: b5e2c9454ae59e2f965251535e23dcd7 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Contents…………………………………………………………………...i
Acknowledgments………………………………………………………..ii Abstract (Chinese)……………………………………………………….iii Abstract………………………………………………………………….iv 1. Introduction…………………………………………………………...1 2. Graph presentation of link diagrams 2.1 A representation of differential mappings of link diagrams………...3 2.2 The graph presentation of a link diagram…………………………...4 2.3 Flipping of graph presentations……………………………………..4 3. Isomorphism of Khovanov chain complexes decides a unique link diagram 3.1 The question………………………………………………………...6 3.2 Cobordisms of Khovanov chain complexes…………………. …….6 3.3 Special case: Different drawings of proper graph presentations…..13 3.4 General case: Link diagrams which do not have proper graph presentations…………………………………………………………...22 References………………………………………………………………28 | |
| dc.language.iso | en | |
| dc.subject | 鏈復形 | zh_TW |
| dc.subject | 圖表示法 | zh_TW |
| dc.subject | Khovanov chain complex | en |
| dc.subject | Graph presentation | en |
| dc.title | 關於結的同構Khovanov chain complex的性質 | zh_TW |
| dc.title | Isomorphism of Khovanov chain complexes for a link | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王藹農,翁秉仁 | |
| dc.subject.keyword | 鏈復形,圖表示法, | zh_TW |
| dc.subject.keyword | Khovanov chain complex,Graph presentation, | en |
| dc.relation.page | 28 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 349.04 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
