Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38055
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁文傑(Man-kit Leung)
dc.contributor.authorLi-Chung Kuoen
dc.contributor.author郭立中zh_TW
dc.date.accessioned2021-06-13T15:59:05Z-
dc.date.available2009-05-26
dc.date.copyright2008-05-26
dc.date.issued2008
dc.date.submitted2008-05-15
dc.identifier.citation1. 此兩例子引述於台灣大學化學系蔡蘊民教授於普化教學網的翻譯文章http://gchem.ac.nctu. edu.tw
2. Kitzerow, H.-S.; Bahr, C. Chirality in Liquid Crystals, Springer: New York, 2001.
3. Quack, M. Angew. Chem. Int. Ed. 2002, 41, 4618.
4. Reddy, R. A.; Tschierske, C. J. Mater. Chem. 2006, 16, 907.
5. Lightfoot, M. P.; Mair, F. S.; Prichard, R. G.; Warren, J. E. Chem. Commun. 1999, 1945.
6. Knowles, W. S. Angew. Chem. Int. Ed. 2002, 41, 1998.
8. Reinitzer, F. Monatsh. Chem. 1888, 9, 421.
9. Lemiuex, R. P. Acc. Chem. Res. 2001, 34, 845.
10. Vlahakis, J. Z.; Wand, M. D.; Lemieux, R. P. J. Am. Chem. Soc. 2003, 125, 6862.
11. Brunsveld, L.; Meijer, E. W.; Rowan, A. E.; Nolte, R. J. M. Top. Stereochem. 2003, 24, 373.
12. Bao, C.; Jin, M.; Lu, R.; Song, Z.; Yang, X. ; Song, D. ; Xu, T. ; Liu, G. ; Zhao, Y. Tetrahedron 2007, 63, 7443.
13. Dumus, D. ; Goodby, J.; Gray, G. W.; Spiess, H.-W. Handbook of Liquid Crystals, Wiley-VCH: New York,1998.
14. (a) Solladié, G.; Zimmermann, R., G. Angew. Chem., Int. Ed. 1984, 23, 348.(b) Witte, P.; Brehmer, M.; Lub, J. J. Mater. Chem. 1999, 9, 2087.(c) Crawford, G. P. IEEE Spectr. 2000, 37, 10, 40.
15. Yang, D.-K.; Wu, S.-T. Fundamentals of Liquid Crystal Devices, John Wiley & Sons, 2006.
16. Lueder, E. Liquid crystal displays: addressing schemes and electro-optical effects, John Wiley & Sons: New York, 2001.
17. Guo, S.; Mori, T.; Goh, M.; Piao, G.; Kyotani, M.; Akagi, K. J. Am. Chem. Soc. 2005, 127, 14647.
18. Goto, H. ; Akagi, K. Angew. Chem. Int. Ed. 2005, 44, 4322. (b)Goto, H.; Akagi, K. Macromolecules 2005, 38, 1091. (c). Goto, H. ; Akagi, K. Chem. Mater. 2006, 18, 255.
19. Ikemoto, T.; Mitsuhashi, K.; Mori, K. Tetrahedron: Asymmetry 1993, 4, 687.
20. Maeda, K.; Takeyama, Y.; Sakajiri, K.;Yashima, E. J. Am. Chem. Soc. 2004, 126, 12684.
21. (a). Eelkema, R.; Feringa, B. L. J. Am. Chem. Soc.. 2005, 127, 13480. (b)Eelkema, R.; Feringa, B. L. Org. Lett. 2006, 8, 1331.
22. Ruxer, J. M.; Solladié, B.; Candau, S. Mol. Cryst. Liq. Cryst. 1978, 41, 109.
23. Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E. M. Chem. Rev. 2000, 100, 1789.
24. Chou, Y.-C.; Chen, C.-T. J. Am. Chem. Soc. 2000, 122, 7662.
25. Leder, L. B. J. Chem. Phys. 1971, 55, 2649.
26. (a) Ferrarini, A.; Moro, G. J.; Nordio, P. L. Mol. Phys. 1996, 87, 485. (b) Ferrarini, A.; Nordio, P. L.; Shibaev, P. V.; Shibaev, V. P. Liq. Cryst. 1998, 24, 219. (c) Cook, M. J.; Wilson, M. R. J. Chem. Phys. 2000, 112, 1560.
27. (a) Wilson, M. R. ; Earl, D. J. J. Chem Phys. 2003, 119, 10280. (b) Neal, M. P.; Solymosi, M. J. Chem. Phys 2003, 119, 3567. (c) Pieraccini, S.; Ferrarini, A.; Gottarelli, G.; Lena, S.; Masiero, S.; Spada, G. P. J. Org. Chem. 2005, 70, 8009.
28. Pieraccini, S.; Donnoli, M. I.; Ferrarini, A.; Gottarelli, G.; Licini, G.; Rosini, C.; Superchi, S.; Spada, G. P. J. Org. Chem. 2003, 68, 519.
29. Hakemi, H. ; Jagodzinski, E. F.; Dupré, D. B. Mol. Cryst. Liq. Cryst. 1983, 91, 129.
30. Ferrarini, A.; Gottarelli, G.; Nordio, P. L.; Spada, G. P. J. Chem. Soc. Perkin Trans. 1999, 2, 411.
31. Gottarelli, G. ; Proni, G. ; Spada, G. P. J. Org. Chem. 1996, 61, 2013.
32. (a).Wilson, M. R. ; Earl, D. J. J. Mater. Chem. 2001, 11, 2672. (b). Kamberaj, H.; Low, R. J.; Neal, M. P. Ferroelectrics 2005, 315, 183.
33. Gottarelli, G.; Solladié, G.; Spada, G. P. Nouv. J. de Chim. 1986, 10, 691.
34. Feringa, B. L.; Eelkema, R. Org. Biomol. Chem. 2006, 4, 3729.
35. Rinaldi, P. L.; Naidu, M. S. R.; Conaway, W. E. J. Org. Chem. 1982, 47, 3987.
36. (a)Feringa, B. L.; van Delden, R. A. Angew. Chem. Int. Ed. 2001, 40, 3198.(b) Feringa, B. L.; van Delden, R. A. Chem. Commun. 2002, 174.
37. (a)Yoshida, J.; Sato, H.; Yamagishi, A.; Hoshino, N. J. Am. Chem. Soc. 2005, 127, 8453.(b) Hoshino, N.; Matsuoka, Y.; Okamoto, K.; Yamagishi, A. J. Am. Chem. Soc. 2003, 125, 1718.
38. Rosini, C.; Rosati, I.; Spada, G. P. Chirality 1995, 7, 353.
39. (a). Proni, G.; Spada, G.. P.; Lustenburger, P.; Welti, R.; Diederich, J. J. Org. Chem. 2000, 65, 5522. (b). Bandin, M.; Casolari, S.; Cozzi, P. G.; Proni, G.; Schmohel, E.; Spada, G. P.; Tagliavini, E.; Umani-Ronchi, A. Eur. J. Org. Chem. 2000, 491.
40. Gottarelli, G.; Hibert, M.; Samori, B.; Spada, G.. P.; Zimmermann, R. J. Am. Chem. Soc. 1983, 105, 7318. (b). Gottarelli, G.; Spada, G. P. J. Org. Chem. 1986, 51, 589.
41. Gottarelli, G.; Osipov, M. A.; Spada, G. P. J. Phys. Chem. 1991, 95, 3879.
42. Rokunohe, J.; Yamaguchi, A.; Yoshizawa, A. Liq. Cryst. 2005, 32, 2, 207.
43. Matteo, A. D.; Todd, S. M.; Gottarelli, G.; Solladié, G.; Williams, V. E.; Lemieux, R. P.; Ferrarini, A.; Spada, G. P. J. Am. Chem. Soc. 2001, 123, 7842.
44. Gottarelli, G.; Hansen, H.-J.; Spada, G. P.; Weber, R. H. Helv. Chim. Acta 1985, 68, 415.
45. (a).Kuball, H. G..; Weiss, B. ; Beck, A. K. ; Seebach, D. Helv. Chim. Acta 1997, 80, 2507. (b).Seed, A. J.; Walsh, M. E. Mol. Cryst. Liq. Cryst. 2004, 410, 201.
46. (a).Rosini, C.; Spada, G. P. ; Proni, G. ; Masiero, S. ; Scamuzzi, S. J. Am. Chem. Soc. 1997, 119, 506. (b).Superchi, S.; Donnoli, M. I.; Proni, G. ; Spada, G. P.; Rosini, C. J. Org. Chem. 1999, 64, 4762.
47. Seebach, D.; Beck, A. K.; Heckle, A. Angew. Chem. Int. Ed. 2001, 40, 92.
48. Pieraccini, S.; Ferrarini, A.; Fuji, K.; Gottarelli, G.; Lena, S.; Tsubaki, K.; Spada, G. P. Chem. Eur. J. 2006, 12, 1121.
49. Kuball, H-G.; Brüning, H. Chirality 1997, 9, 407.
50. White, J. D. Org. Synth. 68, 92.
51. Kotsuki, H.; Kadota, I.; Ochi, M. J. Org. Chem. 1990, 55, 4417.
52. (a) Tewari, R. S.; Kumari, N.; Kendurkar, P. S. Indian J. Chem. Sect. B 1977, 15, 753. (b) Brehm, I.; Hinneschiedt, S.; Meier, H. Eur, J. Org. Chem. 2002, 18, 3162.
53. Ruxer, J. M.; Solladie, B.; Candau, S. Mol. Cryst. Liq. Cryst. 1978, 41, 109.
55. Wang, B.; Bos, P. J. Appl. Phys. 2001, 90(2), 15.
56. Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy: Exciton Coupoling in Organic Stereochemistry. University Science Book, Mill Valley, CA, 1983.
58. Spano, F. C. J. Chem. Phys. 2003, 118, 2, 981.
61. (a) Berova, N.; Nakanishi, K.; Woody, R. W. Circular Dichroism : Principles and Applications 2nd ed. Wiley-VCH: New York, 2000. (b) Lightner, D. A.; Gurst, J. E. Organic conformational analysis and stereochemistry from circular dichroism spectroscopy, Wiley-VCH: New York, 2000.
64. (a).Chow, H.-F.; Mak, C. C. J. Chem. Soc. Perkin. Trans. 1997, 1, 91. (b). McElhanon, J. R.; McGrath, D. V. J. Am. Chem. Soc. 1998, 120, 1647.
66. 王新九 液晶光學和液晶顯示, 科學出版社: 北京, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38055-
dc.description.abstract近年來由於液晶工業的發達,因應各種需求的液晶材料也陸續被開發出來,其中,膽固醇液晶(cholesteric LC)因具有雙穩定性(bistability),可以於不外加電壓下仍能保持畫面的表現,有機會成為新一代的平面顯示技術。膽固醇液晶的材料特性,源於其同時兼具了掌性螺旋結構與液晶性質。螺旋結構的產生,通常是將摻雜掌性分子(chiral dopant)於不帶掌性的液晶分子中而產生的。因此,掌性分子的螺旋扭轉力(helical twisting power, HTP)是決定液晶螺旋扭轉程度的主要因素。在化學的觀點裡,液晶分子的螺旋扭轉是因為掌性分子進入所引起的,也可以說是液晶以巨觀螺旋排列的形式來”表達”微小的分子掌性。因此,液晶分子如何表達摻雜分子的掌性一直是很有趣的題目。一般來說,每種掌性結構有其不同的HTP,而當許多掌性結構被組合於同一分子鏈上時,往往無法於液晶中表現規律的分子構形,而使得HTP變得無法預測。本論文藉由有機合成設計,合成了一系列具有相同掌性中心與液晶原基團(mesogenic group)但不同重複單元數的有機化合物(主鏈結構為2,3-雙氧丙烯基-L-蘇來醇的共聚高分子與寡聚物,如下圖)。藉由液晶原基團的改變,我們成功地使摻雜分子於液晶中表現出規律的構形,使其HTP對掌性結構數呈現加成性。並確認了即使分子量達到6100,其規律性質仍能與小分子一致。zh_TW
dc.description.abstractWhen chiral compounds were dissolved in nematic liquid crystals, cholesteric phases may be induced. It is a very fascinating about their ability to transfer and magnify the chiral information from dopant molecules into liquid crystals. The property of cholesteric phase is directly dependent on the dopant which means the induced cholesterics may be tunable if a dopant sensitive to photo or electric field stimulation was doped. The most important property of chiral dopants is the helical twisting power(HTP, βM), which is a measurable parameter of their ability to produce twisted phase. Investigations of the correlation between molecular structure and phase chirality have been successful in some system, but there is no exact study in a family of compounds with systematic variation of the number of effective chiral inducers. The series of regioregular oligo(phenylenevinylene) oligomers and polymer in our system perform additively HTP(Helical twisting Power)s up to the molecular weight of 6100. In addition, the chiral induction ability increases with the molecular weight. This study provide a new strategy to design molecules with regular HTPs.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:59:05Z (GMT). No. of bitstreams: 1
ntu-97-D91223027-1.pdf: 5573470 bytes, checksum: 60eb353648f1086d4cc2e25a53674fd2 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目錄…………i
中文摘要…………v
英文摘要…………vii
圖目錄…………xi
表目錄…………xv
流程目錄…………xvi
化合物的結構式與編號…………xviii
常用液晶結構…………xix
第一章 緒論…………1
1-1 前言…………1
1-2 液晶中的掌性…………6
A.膽固醇液晶/掌性向列型液晶相…………7
B.掌性層列型C液晶相…………8
C.掌性盤狀液晶相…………9
1-3 膽固醇液晶材料特性的應用…………9
A.光學元件的應用…………10
B.掌性場域概念的應用…………11
C.掌性訊號的放大…………15
1-4 掌性dopant主導的膽固醇液晶相…………18
A.關於dopant分子的重要性質簡述…………19
B.dopant主導的膽固醇相系統的應用…………20
1-5 掌性dopant的設計…………22
A.理論計算-Surface Chirality Model…………24
B.分子結構上的經驗法則…………27
1-6 研究方向…………38
A.重複結構的分子系統相關文獻…………39
B.分子設計概念…………42
第二章 有機合成部分…………48
第三章 實驗觀察原理及儀器概述…………55
3-1 膽固醇相的紋理…………55
3-2 Wedge Cell的原理及螺距計算…………55
3-3 Contact experiment(Miscibility Test)…………58
3-4 螺旋掌性的鑑定…………59
3-5 液晶盒中的光電效應與實驗…………61
3-6 雙穩扭轉向列型液晶顯示器(BTN-LCD)之原理…………65
3-7 CD光譜簡介與激子偶合模型概述…………68
3-8 水平配向液晶盒中的線性二色光譜…………71
第四章 結果與討論…………73
4-1 液晶中chiral induction的探討…………73
A. chiral induction的觀察…………73
B. HTP(Helcial Twisting Power)討論…………75
C.LPolyOPV性結的討論…………84
D.最低摻混量的討論…………90
E.L1OPV2的Contact Experiment…………94
F.溫度對螺距的影響…………97
4-2 OPV系列於液晶中的排列探討…………99
A.OPV的轉移偶極計算…………99
B.OPV於液晶中的紫外-可見光圖譜…………100
C.液晶中的圓二色圖譜…………102
D.液晶中的線性二色光譜圖…………106
E.MM2分子模擬…………108
4-3 溶液中分子構形的討論…………112
A.紫外-可見光譜與螢光光譜…………112
B.圓二色光譜…………116
C.其他溶劑中的圓二色光譜與變溫圓二色光譜…………128
D.核磁共振光譜…………130
E.二維核磁共振光譜…………132
F.光譜資訊綜合討論…………135
第五章 液晶元件中的性質…………139
5-1 dopant於液晶盒中的光電效應…………139
A.液晶盒的選擇…………139
B.E7與5OCB於不同溫度下的光-電效應…………140
C.L2OPV3~L4OPV5的BTN行為…………143
D.LPolyOPV的光-電效應行為…………153
E.0-twist與π-twist的CD光譜…………154
F.液晶元件行為的整理與歸納…………155
5-2 OPV於液晶中光致色變現象與應用…………156
第六章 結論…………165
參考文獻與附註…………166
附錄一 實驗儀器和藥品…………171
附錄二 液晶相關實驗步驟…………172
附錄三 合成步驟與光譜資料…………175
dc.language.isozh-TW
dc.subject掌性摻雜zh_TW
dc.subject寡聚物zh_TW
dc.subject高分子zh_TW
dc.subject螺距zh_TW
dc.subject螺旋扭轉力zh_TW
dc.subject膽固醇液晶zh_TW
dc.subjectchiral dopanten
dc.subjectchiral liquid crystalen
dc.subjectchoelstericen
dc.subjectoligomeren
dc.subjecthelical twisting poweren
dc.subjectpolymeren
dc.subjectpitchen
dc.title多重掌性中心對膽固醇液晶相生成的探討:主鏈結構為2,3-雙氧丙烯基-L-蘇來醇的共聚高分子與寡聚物zh_TW
dc.titleCholesteric Induction by Repeating Chiral Centers
in Oligomers and Polymer
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee徐秀福(Hsiu-Fu Hsu),林怡欣(Yi-Hsin Lin),賴榮豊(Long-Li Lai),周大新(Tahsin J. Chow),林宏洲(Hong-Cheu Lin)
dc.subject.keyword膽固醇液晶,螺旋扭轉力,螺距,掌性摻雜,高分子,寡聚物,zh_TW
dc.subject.keywordchoelsteric,chiral liquid crystal,helical twisting power,pitch,chiral dopant,polymer,oligomer,en
dc.relation.page266
dc.rights.note有償授權
dc.date.accepted2008-05-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
5.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved