請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38031完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁建均(Jian-Jiun Ding) | |
| dc.contributor.author | Kuo-Cyuan Kuo | en |
| dc.contributor.author | 郭國銓 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:57:38Z | - |
| dc.date.available | 2011-01-01 | |
| dc.date.copyright | 2008-06-16 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-06-03 | |
| dc.identifier.citation | Fractional Fourier Transform
[A1] A. C. McBride and F. H. Kerr, “On Namias’ fractional Fourier transforms,” IMA J. Appl. Math., Vol. 39, pp. 159–175, 1987. [A2] A. W. Lohmann, D. Mendlovic, Z. Zalevsky, and R. G. Dorsch, “Some impor-tant Fractional transformations for signal processing,” Opt. Comm., Vol. 125, pp. 18–20, Apr. 1996. [A3] B. Santhanam and J. H. McClellan, “The discrete rotational Fourier transform,” IEEE Trans. Signal Processing, Vol. 42, pp. 994–998, Apr. 1996. [A4] B. W. Dickinson and K. Steiglitz, “Eigenvectors and functions of the discrete Fourier transform,” IEEE Trans. Acoust. Speech Signal Processing, Vol. 30, pp. 25–31, Feb. 1982. [A5] C. Candan, M. Kutay, and H. M. Ozaktas, “The discrete fractional Fourier trans-form,” IEEE Trans. Signal Processing, Vol. 48, No. 5, May 2000. [A6] D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, “Fractional correlation,” Appl. Opt., Vol. 34, No. 2, pp. 303-309, Jan. 1995. [A7] H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Trans-form with Applications in Optics and Signal Processing, John Wiley & Sons [A8] H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Processing, Vol. 44, No. 9, pp.2141-2150, Sep. 1996 [A9] J. Garcia, D. Mas, and R. G. Dorsch, “Fractional Fourier transform calculation through the fast-Fourier-transform algorithm,” Appl. Opt., Vol. 35, No. 35, pp. 7013-7018, Dec. 1996 [A10] J. H. McClellan and T. W. Parks, “Eigenvalue and eigenvector decomposition of the discrete Fourier transform,” IEEE Trans. Audio and Electroacoustics, Vol. 20, No. 1, pp. 66-74, Mar. 1972 [A11] J. M. Vilardy, Jo. E. Calderon, C. O. Torres, Lorenzo. Mattos., “Digital images phase encryption using fractional Fourier transform,” in Electronics, Robotics and Automotive Mechanics Conf., Vol. 1, pp. 832-837, Nov. 1998 [A12] L. Almeida, “The fractional Fourier transform and time-frequency representa-tions,” IEEE Trans. Signal Processing, Vol. 42, No. 12, Nov. 1994. [A13] M. A. Kutay, H. M. Ozaktas, O. Arikan, and L. Onural, “Optimal filters in frac-tional Fourier domain,” IEEE Trans. Signal Processing, Vol. 45, pp. 1129–1143, May 1997. [A14] O. Akay and G. F. Boudreaux-Bartels, “Broadband interference excision in spread spectrum communication systems via fractional Fourier transform,” in Conf. Rec. 32nd Asilomar Conf. Signals, Systems, and Computers, Vol. 1, pp. 832–837, 1998. [A15] R. N. Bracewell, The Fourier Transform and its Applications, McGram-Hill 2002 [A16] R. L. Allen and D. W. Mills, Signal Analysis: Time, Frequency, Scale, and Structure, Wiley-Interscience, NJ, 2004. [A17] R. Sarikaya, Y. Gao, and G. Saon, “Fractional Fourier transform features for speech recognition,” in Conf. ICASSP ’04, Vol. 1, pp. 529-532, May 2004. [A18] S. C. Pei, and J. J. Ding “Two-Dimensional affine generalized fractional Fourier transform,” IEEE Trans. Signal Processing, Vol.49, No. 4, April 2001. [A19] S. C. Pei, M. H. Yeh, and C. C. Tseng, “Discrete fractional Fourier transform based on orthogonal projections,” IEEE Trans. Signal Processing, Vol. 47, No. 5, May 1999 [A20] S. C. Pei and J. J. Ding, “Fractional cosine, sine, and Hartley transforms,” IEEE Trans. Signal Processing, Vol. 50, No. 7, July 2002. [A21] S. C. Pei and J. J. Ding, “Simplified fractional Fourier transform,” J. Opt. Soc. Amer. A, Vol. 17, No. 13, pp. 2355–2367, 2000. [A22] S. Shinde and V. M. Gadre, “An uncertainty principle for real signals in the frac-tional Fourier transform domain,” IEEE Trans. Signal Processing, Vol. 49, No. 11, Nov. 2001. [A23] V. Namias, “The fractional order Fourier transform and its application to quan-tum mechanics,” J. Inst. Maths. Applics., Vol. 25, pp. 241-265, 1980. [A24] X. G. Xia, “On bandlimited signals with fractional Fourier transform,” IEEE Signal Proc. Letters, Vol.3, No. 3, March 1996. [A25] J. J. Ding, “Research of Fractional Fourier Transform and Linear Canonical Transform,” Ph. D thesis, National Taiwan Univ., Taipei, Taiwan, R.O.C, 1997 [A26] L. Onural, M. F. Erden, and H. M. Ozaktas, “Extensions to Common Laplace and Fourier Transforms,” IEEE Signal Processing Letters, Vol. 4, No. 11, Nov. 1997. [A27] F. Zhang, Y. C. Chen, and G. Bi, 'Adaptive Harmonic Fractional Fourier Trans-form,' ISCAS 2000, May 28-31, 2000. [A28] G. B. Folland, A. Sitaram, “The Uncertainty Principle: A Mathematical Survey,” The Journal of Fourier Analysis and Applications, Vol.3, No. 3, pp. 207-238, 1997. [A29] W. Beckner, “Pitt’s Inequality and the Uncertainty Principle,” Proceedings of the American Mathematical Society, Vol. 123, No. 6, pp. 1897-1905, June, 1995. [A30] H. M. Ozaktas and O. Aytur, “Fractional Fourier Domains,” Signal Processing, Vol. 46, pp. 119-124, 1995. [A31] O. Aytur and H. M. Ozaktas, “Non-orthogonal domains in phase space of quan-tum optics and their relation to fractional Fourier transform,” Opt. Commun., vol. 120, pp. 166-170, 1995. [A32] D. Mustard, “Uncertainty principle invariant under fractional Fourier trans-form,” J. austral. Math. Soc. Ser. B, vol. 33, pp. 180-191, 1991. Linear Canonical Transform [B1] J. Hua, L. Liu, and G. Li, “Extended fractional Fourier transforms,” J. Opt. Soc. Am. A, Vol. 14, No. 12, pp. 3316-3322, Dec. 1997 [B2] M. Moshinsky and C. Quesne, “Linear canonical transformations and their uni-tary representation,” J. Math. Phys., Vol. 12, No. 8, p p. 1772-1783, Aug. 1971 Optics [C1] A. Sahin, H. M. Ozaktas, and D. Mendlovic, “Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters,” Appl. Opt., Vol. 37, No. 11, pp.2130-2141, April. 1998. [C2] A. Sahin, M. A. Kutay, and H. M. Ozaktas, “Nonseparable two-dimensional fractional Fourier transform,” Appl. Opt., vol. 37, No. 23, pp.5444-5453, Aug. 1998. [C3] D. F. V. James and G. S. Agarwal, “The generalized Fresnel transform and its applications to optics,” Opt. Comm., Vol. 126, pp. 207–212, May 1996. [C4] D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A, Vol. 10, No. 9, Sep. 1993 [C5] D. Mejndlovic, R. G. Drosch, A. W. Lohmann, Z. Zalevsky, and C. Ferreira, “Optical illustration of a varied fractional Fourier-transform order and the Ra-don-Wigner display,” Appl. Opt., Vol. 35, No. 20, July 1996 [C6] H. M. Ozaktas and D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A, Vol.12, No. 4, April 1995 [C7] J. W. Goodman, Introduction to Fourier Optics, 2nd ed. New York, McGraw Hill, 1988. [C8] L. M. Bernardo, “ABCD matrix formalism of fractional Fourier optics,” Opt. Eng., Vol. 35, No. 3, pp. 732-740, March 1996 [C9] P. Andres, W. D. Furlan, and G. Saavedra, “Variable fractional Fourier processor: a simple implementation,” J. Opt. Soc. Am. A, Vol. 14, No. 4, April 1997 [C10] P. P. Finet, “Fresnel diffraction and the fractional-order Fourier transform,” Opt. Letters, Vol.19, No. 18, pp.1388-1390, Sep. 1994. [C11] R. Dorsh, A. Lohmann, Y. Bitran, D. Mendlovic, and H. Ozaktas, “Chirp filter-ing in the fractional Fourier domain,“ Appl. Opt., Vol.33, No. 32, pp.7600-7602, Nov. 1994. Time-Frequency Distribution [D1] A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A, Vol. 10, No. 10, pp.2181-2186, Oct. 1993 [D2] H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filter-ing, and multiplexing in fractional Fourier domains and their rotation to chirp and wavelet transform,” J. Opt. Soc. Amer. A, Vol. 11, No. 2, pp. 547–559, Feb. 1994. [D3] L. Cohen, “Time-Frequency distributions-A review,” Proc. IEEE, Vol. 77, No. 7, pp. 941-981, July 1989. [D4] P. F. Zhang, D. S. Li, and Q. Wang, “A novel iris recognition method based on feature fusion,” in ICMLA ’04, Vol. 6, pp. 3661-3665, Aug. 2004. [D5] S. C. Pei and J. J. Ding, “Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing,” IEEE Trans. Signal Processing, to be published. [D6] S. Qazi, A. Georgakis, L. K. Stergioulas, and M. Shikh-Bahaei, “Interference suppression in the Wigner distribution using fractional Fourier transformation and signal synthesis,” IEEE Trans. Signal Processing, Vol. 55, No. 6, June 2007. [D7] S. Qian and D. Chen, Joint Time-Frequency Analysis: Methods and Applications, Prentice Hall, N.J., 1996. [D8] R. N. Czerwinski, and D. L. Jones, “Adaptive Short-Time Fourier Analysis,” IEEE Signal Processing Letters, Vol. 4, No. 2, Feb. 1997 [D9] T. J. Gardner and M. O. Magnasco, ”Sparse Time-Frequency Representations,” PNAS, Vol. 103, No. 16, pp. 6094-6099, April 18, 2006. [D10] A. Nuruzzaman, O. Boyraz and B. Jalali, “Time-Stretched Short Time Fourier Transform,” IMTC 2004 Instrumentation and Measurement Technology Con-ference May 2004. [D11] L. Stankovic and S. Stankovic, “An Analysis of Instantaneous Frequency Rep-resentation Using Time-Frequency Distributions-Generalized Wigner Distribu-tion,” IEEE Trans. on Signal Processing, Vol. 43, No. 2, pp. 549-552, Feb. 1995. [D12] D. L. Jones and T. W. Parks, “A High Resolution Data-Adaptive Time -Frequency Representation,” IEEE Trans. on Acoustics, Speech. and Signal Processing. Vol. 38, No. 12, pp. 2127-2135, Dec. 1990 SAR/ISAR [E1] A. W. Rihaczek, Principles of High Resolution Radar, Mc Graw-Hill, 1972 [E2] B. D. Steinberg, “Microwave Imaging of Aircraft,” IEEE, Vol.76, 1988 [E3] B. Borden, “The fractional Fourier transform and ISAR imaging,” Inv. Probl., vol. 16, no. 2, pp. L5–L8, Apr. 2000. [E4] C. W. Sherwin, J.P. Ruina and R.D. Rawcliff. “Some Early Developments in Synthetic Aperture Radar Systems,” IRE Trans. On Military Electronics, Vol. MIL-6, No.2, April 1962. [E5] D. R. Wehner, High Resolution Radar, Artech House,1987 [E6] G. Y. Wang, Z. Bao, and X. B. Sun, “Inverse synthetic aperture radar imaging of nonuniformly rotating targets,” Opt. Eng., vol. 35, no. 10, pp. 3007–3011, Oct. 1996. [E7] G. Y. Wang and Z. Bao, “The minimum entropy criterion of range alignment in ISAR motion compensation,” Proc. Radar ’97 Conf., pp. 236–239, Oct. 1997. [E8] H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagt, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process., vol. 44, no. 9, pp. 2141–2150, Sep. 1996. [E9] J. C. Curlander and R. H. McDonough, Synthetic Aperture Radar: System and Signal Processing, John Wiley & Sons, New York, 1991 [E10] J. C. Wood and D. T. Barry, “Linear signal synthesis using the Radon–Wigner transform,” IEEE Trans. Signal Process., vol. 42, no. 8, pp. 2105–2111, Aug. 1994. [E11] L. J. Cutrona, et al., “A High Resolution Radar Combat-surveillance Systems,” IRE Trans. On Military Electronics, Vol. MIL-5, No.2, April 1961. [E12] L. Du and G. Su, “Adaptive inverse synthetic aperture radar imaging for non-uniformly moving targets,” IEEE Geoscience and Remote Sensing Letters, Vol. 2, No. 3, pp. 247-249, July 2005. [E13] V. C. Chen and H. Ling, “Joint time-frequency analysis for radar signal and im-age processing,” IEEE Trans. Signal Process. Mag., vol. 16, no. 2, pp. 81–93, Mar. 1999. [E14] V. C. Chen and S. Qian, “Joint time-frequency transform for radar range-Doppler imaging,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 2, pp. 486–499, Apr. 1998. [E15] X. G. Xia, Y. Owechko, B. H. Soffer, and R. M. Matic, “On generalized mar-ginal time-frequency distributions,” IEEE Trans. Signal Process., vol. 44, no. 11, pp. 2882–2886, Nov. 1996. [E16] Y. X. Wang, H. Ling, and V. C. Chen, “ISAR motion compensation via adaptive joint time-frequency technique,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 2, pp. 670–677, Apr. 1998. [E17] 廖泫銘, 合成孔徑雷達影像模擬之研究, master thesis, National Taiwan Uni-versity, Taipei, Taiwan, R.O.C, 1999. [E18] 劉永坦, et al., 雷達成像技術, 哈爾濱工業大學出版社, 2003. Speech & Music Score [F1] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, Pren-tice-Hall, 1978. [F2] 王小川, 語音訊號處理, 全華科技圖書股份有限公司, Taipei, 2004. [F3] C. Raphael, “Automatic Transcription of Piano Music,” Proc. ISMIR, 2002 [F4] A. Klapuri , “Signal Processing Methods for the Automatic Transcription of Music,” Ph. D thesis, Tampere University of Technology, Tampere, March 2004. [F5] A. Klapuri , “Multipitch Analysis of Polyphonic Music and Speech Signals Us-ing an Auditory Model,” IEEE Trans. on Audio, Speech, and Language proc-essing, August 2007. [F6] Y. Zhu and M. S. Kankanhalli, “Precise Pitch Profile Feature Extraction From Musical Audio for Key Detection,” IEEE Trans. on Multimedia, Vol. 8, No. 3, June 2006 [F7] K. Miyamoto, H. Kameoka, H. Takeda, T. Nishimoto and S. Sagayama, “Prob-abilistic Approach to Automatic Music Transcription from Audio Signals,” ICASSP 2007. [F8] A. Klapuri and M. Davy, 'Signal Processing Methods for Music Transcription,' Springer-Verlag, New York, 2006. [F9] A. Klapuri, 'A perceptually motivated multiple-F0 estimation method,' in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, New York, Oct. 2005. [F10] K. D. Martin, 'A Blackboard System for Automatic Transcription of Simple Polyphonic Music' M.I.T Media Lab. Perceptual Computing Section Technical Report No. 385. [F11] M. Marolt, 'A Connectionist Approach to Automatic Transcription of Poly-phonic Piano Music,' IEEE Trans. on Multimedia, Vol. 6, No. 3, June 2004. [F12] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and M. B. Sandler, 'A Tutorial on Onset Detection in Music Signals,' IEEE Trans on Speech and Audio Processing, Vol.13, No. 5, Sep. 2005. [F13] S. W. Hainsworth, M. D. Macleod, and P. J. Wolfe, 'Analysis of Reassigned Spectrograms for Musical Transcription,' IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 21-24, Oct. 2001. [F14] H. Kameoka, T. Nishimoto and S. Sagayama, “Audio Stream Segregation of Multi-pitch Music Signal Based on Time-Space Clustering Using Gaussian Kernel 2-Dimensional Model,” ICASSP 2005. [F15] M. Ryynanen and A. Klapuri, “Automatic Bass Line Transcription from Stream-ing Polyphonic Audio,” ICASSP 2007. [F16] A. Kobzantsev, D.Chazan and Y. Zeevi, “Automatic Transcription Of Piano Polyphonic Music,” in Proceedings of the 4th International Symposium on Im-age and Signal Processing and Analysis, 2005. [F17] K. D. Martiny, “Automatic Transcription of Simple Polyphonic Music: Robust Front End Processing,” M.I.T. Media Laboratory Perceptual Computing Section Technical Report No. 399, Dec. 1996. [F18] P. J. Wolfe, S. J. Godsill, M. Dorfler, 'Multi-Gabor Dictionaries for Audio Time-Frequency Analysis,' IEEE Workshop on Applications of Signal Process-ing to Audio and Acoustics, pp. 21-24, Oct. 2001. [F19] R. Keren, Y. Y. Zeevi and D. Chazan, “Multiresolution Time-Frequency Analy-sis Of Polyphonic Music,” IEEE, pp. 565-568, 1998. [F20] Y. Qi, J. W. Paisley, and L. Carin, “Music Analysis Using Hidden Markov Mix-ture Models” IEEE Transactions on Signal Processing, Vol. 55, No. 11, Nov. 2007. [F21] S. Dixon “On the Computer Recognition of Solo Piano Music,” in Proceedings of Australasian Computer Music Conference, pp. 31-37, Brisbane, Australia, July 2000. [F22] Y. Zhu and M. S. Kankanhalli, “Precise Pitch Profile Feature Extraction From Musical Audio for Key Detection,” IEEE Transactions on Multimedia, Vol. 8, No. 3, pp.575-584, June 2006. [F23] J. P. Bello, G. Monti, and M. Sandler, “Techniques for Automatic Music Tran-scription,” MUSIC IR 2000. [F24] W. J. Pielemeier, G. H. Wakefield, and M. H. Simoni, 'Time-Frequency Analy-sis of Musical Signals,' in Proceedings of the IEEE, Vol. 84, No. 9, pp. 1216-1230, 1996. [F25] S. W. Hainsworth and P. J. Wolfe, “Time-Frequency Reassignment for Music Analysis,” in Proceedings of International Computer Music Conference (ICMC'01), pp. 14-17, La Habana, Cuba, September 2001. [F26] M. Goodwin and M. Vetterli, “Time-Frequency Signal Models For Music Analysis, Transformation, And Synthesis,” TFTS’96, 1996. [F27] M. Marolt, “Transcription Of Polyphonic Piano Music With Neural Networks,” 10th Mediterranean Electrotechnical Conference, MEleCon 2000, Vol. II, 2000. [F28] Y. Ren and S. K. Jeng, 'An Automatic Transcription System with Octave Detec-tion,' ICASSP'02, Vol. 2, pp. 1865-1868, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38031 | - |
| dc.description.abstract | 傅立葉分析在信號處理中佔有很重要的角色,我們常拿它來分解訊號中各頻率的成分,然而在時頻分析上仍尚嫌不足,因為傅立葉分析只能適用穩態的訊號,無法處理時變的訊號,故而發展出許多的時頻分析的工具。固然發展時頻分可以幫助我們處理時變的訊號,而擴展傅立葉這個工具本身也是另一種方式—分數傅立葉轉換。
本篇論文中主要分成兩個部份: 第一個部份為擴充傅立葉轉換的數學理論,包括了分數傅立葉轉換和線性完整轉換的理論介紹,還有分數傅立葉轉換結合時頻分析的應用,也可以推廣至光學、雷達的應用。我們推導了測不準原理在分數傅立葉轉換和線性標準轉換的不等式,還有將連續的分數傅立葉轉換從轉換成離散的方法。一維的分數傅立葉轉換可做出傳統傅立葉做不出來的濾波器、降低取樣頻率、加密等的應用,而二維的分數傅立葉轉換可應用在影像、光學上。 第二個部份是系統性的介紹時頻分析的工具,整理各種時頻分析的優缺點,同時提出三種方法可以降低時頻分析的計算,其中包含了可適性的時頻分析。將這些時頻分析的工具實際應用在音樂和人聲上,將自動簡譜產生器的構想進一步的實現,包含了去除倍頻的訊號、根據不同的訊號特性將計算量降低,還有模擬與實驗的成果。 | zh_TW |
| dc.description.abstract | Fourier analysis takes an important role in signal processing, and we often use it to decompose frequencies for further applications. However, in the time-frequency analy-sis, the Fourier transform is not good enough. Since the Fourier transform can only deal with the stationary signals but can not deal with non-stationary or time-varying signals. Although we can develop time-frequency analysis to help us deal with time-varying signals, we also can extend the math of Fourier transform itself – fractional Fourier transform.
This thesis mainly has two parts: the first part is to extend the math of the Fourier transform. This includes the theorem of the fractional Fourier transform and the linear canonical transform. The fractional Fourier transform can combine time-frequency analysis, and extend to applications of optics and Radar systems. We also derive the uncertainty principles of the fractional Fourier transform and the linear canonical trans-form, and discrete the continuous fractional Fourier transform with ei-gen-decomposition. One dimensional fractional Fourier transform can produce filters which traditional Fourier transform cannot and also reduce the sampling rate and en-cryption…. Two dimensional fractional Fourier transform can deal with image and op-tics. The second part will introduce the time-frequency distribution systematically. We list pros and cons of each time-frequency distribution and propose three methods to re-duce the computation, including adaptive time-frequency distribution. We will apply these tools to music and acoustics signals. We are going to realize some parts of the auto-transcription and discuss the problems we face and the solutions, including exceed the harmonics and computation. Finally, there are our results and simulations. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:57:38Z (GMT). No. of bitstreams: 1 ntu-97-R95942111-1.pdf: 2723435 bytes, checksum: 6e1ee8fd79d1907b25f41eb77e36f38e (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii LIST OF FIGURES vii LIST OF TABLES xiii Chapter 1 Introduction 1 Chapter 2 Fractional Fourier Transform and Linear Canonical transform 3 2.1 Definition of Fractional Fourier Transform (FrFT) 3 2.2 The Linear Canonical Transform (LCT) 7 2.3 Two-dimensional affine generalized FrFT 8 Chapter 3 Applications of FrFT 15 3.1 Filter Design 15 3.2 Sampling 18 3.3 Fourier Optics 19 3.4 Encryption 23 3.5 SAR/ISAR applications 24 Chapter 4 The Uncertainty Principle of FrFT and LCT 29 4.1 Introduction 29 4.2 Logarithmic Uncertainty Principle 30 4.3 Heisenberg’s Uncertainty Principle 32 4.4 Conclusion 34 Chapter 5 Discrete Fractional Fourier Transform 35 5.1 Brief introduction of Discrete FrFT(DFrFT) 35 5.2 Direct form of DFrFT 35 5.3 Eigen decomposition type 36 5.4 Relationship Between Continuous and Discrete FrFT 40 Chapter 6 Time-Frequency Distribution 41 6.1 Introduction 41 6.2 Short Time Fourier Transform and Gabor Transform 41 6.3 Wigner Distribution (WDF) 45 6.4 Gabor-Wigner Distribution 47 6.5 Cohen class 49 6.6 Interference Suppression in the Wigner Distribution 55 6.7 Improvement of Time-Frequency Distribution 56 Chapter 7 Characters of Acoustic and Music Signals Analysis 61 7.1 Characteristics of Acoustic Signals 61 7.2 Sense of Hearing 63 7.3 Acoustic Signals Recognition 66 7.4 Characteristics of Music Signals 68 Chapter 8 Music Signal Analyzed by Time-Frequency Distribution 71 8.1 Why Time-Frequency Distribution 71 8.2 Monophonic and Polyphonic 71 8.3 Problems and Solutions 74 8.4 Adaptive Time-Frequency Distribution 83 Chapter 9 Acoustic Signal Analyzed by Time- Frequency Distribution 91 9.1 Signal processing of sound 91 9.2 Problems of Acoustic Signals Analysis and Discussions 100 Chapter 10 Conclusions and Future Work 103 References 105 | |
| dc.language.iso | en | |
| dc.subject | 線性完整轉換 | zh_TW |
| dc.subject | 分數傅立葉轉換 | zh_TW |
| dc.subject | 測不準原理 | zh_TW |
| dc.subject | 可適性時頻分析 | zh_TW |
| dc.subject | 時頻分析 | zh_TW |
| dc.subject | uncertainty principle | en |
| dc.subject | fractional Fourier transform | en |
| dc.subject | linear canonical transform | en |
| dc.subject | time-frequency distribution | en |
| dc.subject | adaptive time-frequency distribution | en |
| dc.title | 分數傅利葉轉換與時頻分析及其在聲音訊號上的應用 | zh_TW |
| dc.title | Fractional Fourier Transform and Time-Frequency Analysis and Apply to Acoustic Signals | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉敏宏,王鵬華,曾益聰 | |
| dc.subject.keyword | 分數傅立葉轉換,線性完整轉換,測不準原理,時頻分析,可適性時頻分析, | zh_TW |
| dc.subject.keyword | fractional Fourier transform,linear canonical transform,uncertainty principle,time-frequency distribution,adaptive time-frequency distribution, | en |
| dc.relation.page | 115 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-06-04 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
