請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38022完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃天偉 | |
| dc.contributor.author | Chien-Hsien Lee | en |
| dc.contributor.author | 李建賢 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:57:06Z | - |
| dc.date.available | 2008-06-16 | |
| dc.date.copyright | 2008-06-16 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2008-06-08 | |
| dc.identifier.citation | [1] Troughton. P, “Measurement technique in microstrip,”
Electron. Lett., vol.5, No.2, pp.25-26, January 23, 1969. [2] Wolff, “Microstrip bandpass filters using degenerate modes of a microstrip ring resonator,” Electron. Lett., vol.8, No.12, pp.163-164, June 1972. [3] Wu.Y.S. and Rosenbaum F.J, “Mode chart for microstrip ring resonators,” IEEE Trans. Microwave Theory and Tech., vol.21, pp.487-489, Jul 1973. [4] M. Guglielmi and G. Gatti, “Experimental investigation of dual-mode microstrip ring resonator,” proc. 20th Eur. Microwave conf., pp.901-906, September 1990. [5] C. H. Ho and K. Chang, “Mode phenomenons of perturbed annular ring elements,” Texas A&M University Report, College Station, September 1991. [6] U. Karacaoglu, I.D. Robertson, and M. Guglielmi, “A dual-mode microstrip ring resonator filter with active devices for loss compensation” IEEE MTT-S Int. Microwave Symp. Digest., pp.189-192, 1993. [7] C. H. Ho, L. Fan and K. Chang, “Slotline annular elements and their applications to resonator, filter and coupler design,” IEEE Tran. Microwave Symp. Digest., pp.189-192, 1993. [8] H. Tabuki, M. Sagawa, M. Matsuo, and M. Makimoto, “Stripline dual-mode ring resonator and their application to microwave devices,” IEEE Trans. Microwave Theory and Tech., vol.44, pp.723-729, May 1996. [9] I. Awai, and T. Yamachita, “Theory on rotated excitation of a circular dual-mode resonator and filter,” IEEE MTT-S Int. Microwave Symp. Digest., vol.2, pp.781-784, June 1997. [10] W. C. Jung, H. J. Park, J. C. Lee, “Microstrip ring bandpass filters with new interdigital side-coupling structure,” Asia Pacific Microwave Conf., vol.3, pp.678-681, Dec 1999. [11] A. C. Kundu, and I. Awai, “Effect of external circuit susceptance upon dual-mode coupling of a bandpass filter,” Electron. Lett., vol.10, pp.457-459, Nov. 2000. [12] A. C. Kundu, and I. Awai, “Control of attenuation pole frequency of a dual-mode microstrip ring resonator bandpass filter,” IEEE Trans. Microwave Theory and Tech., vol.49, pp.1113-1117, June 2001. [13] L. H. Hsieh and K. Chang, “Compact, low insetion loss, sharp rejection wide band bandpass filters using dual-mode ring resonators with tuning stubs,” electron. Lett., vol.37, pp.1345-1347, Oct. 2001. [14] Virdee, B. S. and Grassopoulos, C., “Folded ring microstrip filter,” Microwave Conference, 2003. 33rd European, vol.1, 7-9 Oct. 2003 page(s): 151-154. [15] M. F, Lei and H. Wang, “An analysis of miniaturized dual-mode bandpass filter structure using shunt capacitance perturbation,” IEEE Trans. Microwave Theory and Tech., Vol.53, Issue 3, Part 1, pp.861 – 867, March 2005. [16] K. Chang, Microwave Ring Circuits and Antenna, Chapter 6, New York, John Wiley & Sons, Inc., 1996. [17] I. Wolff and N. Knoppik, “Microstrip ring resonator and dispersion measurements on microstrip lines,” Electron. Lett., vol.7, No.26, pp.779-781, Dec. 1971. [18] R. P. Owens, “Curvature effect in microstrip ring resonators,” Electron. Lett., vol.12, No.14, pp.356- 357, July 8, 1976. [19] S. W. Wang and R. B. Wu, “Design of V-band passive component-filters and polarizers,” Master Thesis, National Taiwan University, 2003. [20] Cheng, K. -K.M., “Design of dual-mode ring resonators with transmission zeros,” Electron. Lett., vol.33, No.16, pp.1392-1393, July 31, 1997. [21] K. Chang, T. S. Martin, F. Wang, and J. L. Klein, “On the study of microstrip ring and varactor-tuned circuits,” IEEE Trans. Microwave Theory Tech., vol. 35, pp. 1288-1295, December 1987. [22] L. H. Hsieh and K. Chang, “Analysis, modeling and simulation of ring resonators and their applications to filters and oscillators,” Doctor Thesis, Texas A&M University, 2004. [23] Jia-Shen G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications, John Wiley & Sons, Inc., 2001. [24] David M. Pozar, Microwave Engineering, John Wiley & Sons, Inc., 1998. [25] A. Hennings, G. Semouchkin, E. Semouchkina and M. Lanagan, “Design Optimization of Microstrip Square- Ring Band-Pass Filter with Quasi-Elliptic Function,” European Microwave Conference, vol.1, pp. 175-178.7-9 Oct. 2003. [26] L. H. Hsieh and K. Chang, “Dual-mode quasi-elliptic- function bandpass filters using ring resonators with enhanced-coupling tuning stubs,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 1340-1345, May 2002. [27] Doug Rytting, “TRL calibration,” OGI Center for Professional Development, Sep. 2004. [28] V. Rosine, B. Dominique, V. Serge, L. Markku and J. Tuomo, “High performances of shielded LTCC vertical transitions from DC up to 50 GHz,”IEEE Trans. Microwave Theory Tech., vol. 53, No.6, pp. 2026-2023, June 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38022 | - |
| dc.description.abstract | 在本論文中,提出了新型的矩形環狀濾波器,此新型濾波器是利用矩形的轉角寄生電容以實現傳統環形結構所無法達成之 V 頻段濾波器,並建立該濾波器的等效模型,且進行參數的分析。我們以
RO4003C 此板材來設計該濾波器在微帶線以及帶線架構上,微帶線 的實作結果在通帶頻段的插入損耗約-1.48dB、返回損耗最低為 -19.2dB;在帶線架構中,也利用低溫共燒陶瓷(Low Temperature Co-fired Ceramic, LTCC)之技術去實現,其實作結果在通帶頻段的插入損耗約-3.8dB、返回損耗皆小於-8.8dB。 此外,也設計適合各架構的轉接以及貫穿-反射-傳輸線段校正元件(Thru-Reflect Line, TRL calibration),並利用理論與實作結果驗證了所提出之濾波器架構的正確性及可行性。 | zh_TW |
| dc.description.abstract | In this thesis, we present the novel rectangular ring filter. This novel filter utilizes parasitic capacitance from discontinuous corner to achieve the band pass filter
that the traditional ring structure can not achieve in V-band. Also, we build the equivalent model and analyze the parameter of the rectangular ring filter. We design the filter on microstrip line and stripline structure by substrate, RO4003C. In microstripline structure, the insertion loss from measurement is -1.48dB and the minimum return loss is -19.2dB. In stripline structure, we also use LTCC to realize the rectangular ring filter. The insertion loss from measurement is -3.8dB and the return loss is below -8.8dB. In addition, we design GCPW to stripline transition and the TRL calibration components for measurement. The theory results have a good agreement with measurements, which demonstrate the validity and feasibility of the proposed filter designs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:57:06Z (GMT). No. of bitstreams: 1 ntu-96-R94942082-1.pdf: 4058954 bytes, checksum: dac3bb5c695b4eb221b80f35a190010a (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目錄.....................................................I
圖表目錄...............................................III 第一章 簡介..............................................1 1-1 研究動機.............................................1 1-2 電路損耗.............................................2 1-3 研究歷程與現況.......................................2 1-4 論文架構.............................................4 第二章 雙模環型共振器之分析與設計........................5 2-1 簡介.................................................5 2-2 環型共振器的場與分析.................................6 2-2.1 等效模型...........................................6 2-2.2 共振器退化模.......................................8 2-3 環型共振器之公式與實作...............................9 2-3.1 設計公式概述.......................................9 2-3.2 設計公式實作......................................11 2-4 分析矩形環狀共振器..................................12 2-4.1 利用傳輸線分析矩形環狀共振器......................12 2-4.2 轉角寄生電容......................................15 2-4.3 矩形共振器之品質因素..............................15 2-4.4 矩形環狀濾波器之等效模型..........................16 2-5 矩形環狀濾波器之參數分析............................17 2-6 結論................................................19 第三章 TRL 校正及V 頻段矩形環狀濾波器於微帶線架構之設計.35 3-1 簡介................................................35 3-2 TRL 校正之原理......................................36 3-2.1 TRL 校正之方塊圖及信號流程圖......................36 3-2.2 TRL 校正公式推導..................................37 3-3 TRL 校正於微帶線架構之設計..........................41 3-3.1 TRL 校正使用錐形傳輸線架構........................41 3-3.2 TRL 校正使用四分之波長阻抗轉換傳輸線架構..........42 3-4 V頻段矩形環狀濾波器實現於微帶線架構之討論...........43 3-4.1 TRL 校正後響應....................................44 3-4.2 磅線連結架構響應..................................45 3-5 結論................................................46 第四章 V 頻段矩形環狀濾波器於帶線架構之設計.............66 4-1 簡介................................................66 4-2 V頻段矩形環狀濾波器於帶線架構之討論.................66 4-2.1 單級矩形環狀濾波器................................67 4-2.2 雙級串接矩形環狀濾波器............................68 4-3 V頻段矩形環狀濾波器於低溫共燒陶瓷之應用.............69 4-3.1 設計TRL 校正元件於低溫共燒陶瓷技術................69 4-3.2 設計V頻段矩形環狀濾波器於低溫共燒陶瓷技術.........71 4-3.3 校正V頻段矩形環狀濾波器於低溫共燒陶瓷技術.........71 4-4 結論................................................72 第五章 總結.............................................88 參考文獻................................................92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雙模 | zh_TW |
| dc.subject | V頻段 | zh_TW |
| dc.subject | 室內無線通訊 | zh_TW |
| dc.subject | 環狀 | zh_TW |
| dc.subject | 濾波器 | zh_TW |
| dc.subject | indoor wireless | en |
| dc.subject | Filter | en |
| dc.subject | Dual-Mode | en |
| dc.subject | Ring | en |
| dc.subject | V-Band | en |
| dc.title | V頻段雙模矩形環狀濾波器之設計 | zh_TW |
| dc.title | Design of Dual-Mode Rectangular Ring Filter on V-band | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧信嘉,林祐生,王琦學 | |
| dc.subject.keyword | 濾波器,環狀,雙模,V頻段,室內無線通訊, | zh_TW |
| dc.subject.keyword | Filter,Dual-Mode,Ring,V-Band,indoor wireless, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-06-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 3.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
