Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38002
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁建均
dc.contributor.authorYu-Si Zhangen
dc.contributor.author張育思zh_TW
dc.date.accessioned2021-06-13T15:55:53Z-
dc.date.available2011-06-24
dc.date.copyright2008-06-24
dc.date.issued2008
dc.date.submitted2008-06-13
dc.identifier.citation118
Reference
[Wavelets]
[1] R. L. Allen and D. W. Mills, Signal Analysis, Wiley Interscience, 2004.
[2] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 2nd edition, 1999.
[3] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,”
IEEE Trans. Pattern Anal. Mach. Intell, vol. 11, no. 7, July 1989.
[4] W. Sweldens, “The lifting scheme: a custom-design construction of biorthogonal
wavelets,” Appl. Comput. Harmon. Anal., 3(2):186-200, 1996.
[5] A. R. Calderbank, I. Daubechies, W. Sweldens, B. L. Yeo, “Wavelet transforms
that map integers to integers,” Appl. Comput. Harmon. Anal., 5(3):332-369, 1998.
[6] V. Strela, J. Portilla, M. J. Wainwright, and E. P. Simoncelli, “Image denoising using
scale mixtures of gaussians in the wavelet domain, ”IEEE Trans. Image Process,
vol. 12, pp. 1338-1351, Nov. 2003.
[7] M. Vetterli, “Wavelets, approximation, and compression” IEEE Signal Process.
Mag., vol. 18, pp. 59-73, 2001.
[8] D. Donoho, “Wedgelets: nearly minimax estimation of edges,” Ann. Stat, vol. 27,
pp. 859-897, May 1999.
[9] I. Daubechies, Ten Lectures on Wavelets, New York: SIAM, 1992.
[Ridgelets]
[10] E. J. Candes, D. L. Donoho, “Ridgelets: a key to higher-dimensional intermittency?,”
Phil. Trans. R. Soc. Lond. A, vol. 357, no. 1706, pp. 2495-2509, Sep.
1999.
119
[11] M. N. Do, M. Vetterli, “The finite ridgelet transform for image representation,”
IEEE Trans. Image Process, vol. 12, no. 1, Jan. 2003.
[Bandelets]
[12] E. L. Pennec and S. Mallat, “Sparse geometric image representations with bandelets,”
IEEE Trans. Image Process, vol. 14, no 4, Apr. 2005.
[13] E. L. Pennec and S. Mallat, “Bandelet image approximation and compression,”
SIAM, vol. 4, no. 3, pp. 992-1039, Sep. 2005.
[Curvelets]
[14] J. L. Starck, E. J. Candes, D. L. Donoho, “The curvelet transform for image denoising,”
IEEE Trans. Image Process, vol. 11, no. 7, June 2002.
[15] E. J. Candes and D. L. Donoho, “Continuous curvelet transform: i. resolution of
the wavefront set,” Appl. Comput. Harmon. Anal., vol. 19, pp. 162-197, Sep. 2005.
[16] E. J. Candes and D. L. Donoho, “Continuous curvelet transform: ii. discretization
and frames,” Appl. Comput. Harmon. Anal., vol. 19, pp. 198-222, Sep. 2005.
[17] E. J. Candes and L. Demanet, “The curvelet representation of wave propagators is
optimally sparse,” Commun. Pure Appl. Math, vol. 58, pp. 1472-1528, Mar. 2005.
[18] L. Demanet, E. Candes, D. Donoho, and L. Ying, “Fast discrete curvelet transforms,”
Multiscale Model. Simul., vol. 5, no. 3, pp. 861-899, May 2006.
[19] E. J. Candes and D. Donoho, “New tight frames of curvelets and optimal representations
of objects with piecewise-C2 singularities,” Commun. Pure Appl. Math,
vol. 57, pp. 219-266, Nov. 2003.
[20] M. N. Do and M. Vetterli, “Pyramidal directional filter banks and curvelets,” Proceedings,
2001 International Conference on Image Processing, vol. 3, pp. 158-161,
Oct. 2001.
[Contourlets]
120
[21] M. N. Do and M. Vetterli, “The contourlet transform: an efficient directional multiresolution
image representation,” IEEE Trans. Image Process, vol. 14, no. 12,
Dec 2005.
[22] M. N. Do, Directional Multiresolution Image Representations, Ph.D. dissertation,
School Comput. Commun. Sci., Swiss Fed. Inst. Technol., Lausanne, Switzerland,
2001, available from
http://biblion.epfl.ch/EPFL/theses/2001/2500/EPFL_TH2500.pdf
[23] R. Ansari, “Efficient IIR and FIR fan filters,” IEEE Trans. Circuits Syst, vol. 34, pp.
941-945, Aug. 1987.
[24] R. H. Bamberger and J. T. Smith, “A filter bank for the directional decomposition
of images: theory and design,” IEEE Trans. Signal Process, vol. 40, pp. 882-893,
1992.
[Shearlets]
[25] G. Kutyniok and T. Sauer, Adaptive Directional Subdivision Schemes and Shearlet
Multiresolution Analysis,” 2007, available in http://www.shearlet.org/.
[26] S. Dahlke, G. Kutyniok, G. Steidl, and G. Teschke, “Shearlet coorbit spaces and associated
banach frames,” 2007, available in http://www.shearlet.org/.
[27] G. Easley, W. Lim, and D. Labate, “Sparse directional image representations using
the discrete shearlet transform,” 2006, available in http://www.shearlet.org/.
[28] G. Kutyniok and D. Labate, “Resolution of the wavefront set using continuous
shearlets,” 2006, available in http://www.shearlet.org/.
[29] G. Kutyniok and T. Sauer, “From wavelets to shearlets and back again,” 2007,
available in http://www.ahearlet.org/.
[30] K. Guo and D. Labate, “Representation of Fourier integral operators using shearlets,”
available in http://www.shearlet.org/.
121
[31] S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, and G. Teschke, “The uncertainty
principle associated with the continuous shearlet transform,” available in
http://www.shearlet/org/.
[32] K. Guo and D. Labate, “Optimally sparse multidimensional representation using
shearlets,” SIAM J. Math Anal., no. 39, pp. 298-318, 2007.
[33] G. Kutyniok and D. Labate, “Construction of regular and irregular shearlets,” J.
Wavelet Theory and Appl., no. 1, pp. 1-10, 2007.
[34] K. Guo, G. Kutyniok, and D. Labate, “Sparse multidimensional representations using
anisotropic dilation and shear operators,” available in http://www.shearlet.org/.
[35] D. Labate, W-Q. Lim, G. Kutyniok, and G. Weiss, “Sparse multidimensional representation
using shearlets,” available in http://www.shearlet.org/.
[Other methods]
[36] F. G. Meyer and R. R. Coifman, “Brushlets: a tool for directional image analysis
and image compression,” Appl. Comput. Harmon. Anal., vol. 4, pp. 147-187, 1997.
[37] J. Liu and P. Moulin, “Complexity-regularized image denoising,“ IEEE Trans. Image
Process, vol. 10, pp. 841-851, Jun. 2001.
[38] M. B. Wakin, J. K. Romberg, H. Choi, R. G. Baraniuk, “Wavelet-domain approximation
and compression of piecewise smooth images,” IEEE Trans. Image Process,
vol. 15, no. 5, May 2006.
[39] M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases
for digital holography,” IEEE Trans. Image Process, vol. 12, no. 1, Jan 2003.
[40] D. L. Donoho, “Wedgelets: nearly minimax estimation of edges,” The Anals of Statistics
vol. 27, no.3, 1999.
[Others]
[41] M. Vetterli David, L. Donoho, R. A. DeVore, and I. Daubechies, “Data compres122
sion and harmonic analysis,” IEEE Trans. Inf. Theory, vol. 44, pp. 2435-2476, Oct.
1998.
[42] M. N. Do and M. Vetterli, “Framing pyramids,” IEEE Trans. Signal Process, vol.
51, pp. 2329-2342, Sep. 2003.
[Applications]
[43] A. Majumdar, “Bangla basic character recognition using digital curvelet transform,”
Journal of Pattern Recognition Research, vol. 1, pp. 17-26, 2007.
[44] B.B. Chaudhuri and A. Majumdar, “Curvelet-based multi svm recognizer for offline
handwritten Bangla: a major Indian script,” ICDAR, 2007.
[45] Z. Zhang, S. Ma, and X. han, “Multiscale feature extraction of finger-vein patterns
based on curvelets and local interconnection structure neural network,” ICPR'06,
2006.
[46] F.M. Kazemu, S. Samadi, H.R. Poorreza, and M. Akbarzadeh-T, “Vehicle recognition
based on Fourier, wavelet and curvelet transforms- a comparative study,”
ITNG'07, 2007.
[47] J. Zhang, Z. Zhang, W. Huang, Y. Lu, and Y. Wang, “Face recognition based on
curvefaces,” ICNC 2007, 2007.
[48] J. Starck, F. Murtagh, E. J. Candes, and D. L. Donoho, “Gray and color image contrast
enhancement by the curvelet transform,” IEEE Trans. on Image Proc., vol. 12,
no. 6, June 2003.
[49] A. Garzelli, F. Nencini, L. Alparone, and S. Baronti, “Multiresolution fusion of
multispectral and panchromatic images through the curvelet transform,” IEEE,
2005.
[50] Jayalakshmi M., S. N. Merchant, U. B. Desai, “Digital watermarking in contourlet
domain,” ICPR'06, 2006.
123
[51] N. Baaziz, “Adaptive watermarking schemes based on a redundant contourlet
transform,” IEEE, 2005.
[52] H. Li, W. Song, and S. Wang, “A novel blind watermarking algorithm in contourlet
domain,” ICPR'06, 2006.
[53] Z. Xu, K. Wang, and X. H. Qiao, “A novel watermarking scheme in contourlet
domain based on independent component analysis,” IIH-MSP'06, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38002-
dc.description.abstract小波轉換最重要的特性即為可使用少量的小波轉換係數近似一個信號。因為
這個特性,JPEG 2000 納入了小波轉換,做為其演算法的一部分。
然而,此一特性的理論基礎皆是根據一維信號而來。雖然我們可以使用可分
離小波轉換將一維小波轉換擴展至二維小波轉換。但可分離小波轉換乎略了二維
信號相較於一維信號,有較豐富的幾何特性,如邊緣。
既然二維信號有更多的特性,許多學者便開使研究專門針對二維信號的轉
換,使其不但擁用小波轉換所擁有的特性,且提供優於可分離小波轉換的效果。
本論文著眼於分析這些方法的精神、利弊,並加以改善,使其更加符合實用
所需的條件。
zh_TW
dc.description.abstractThe most important feature of the wavelet transform is that we can use few wavelet
coefficients to approximate a signal. Because of this property, JPEG 2000 adopted the
wavelet transform as a portion of its algorithm.
However, the fundamental theory of this feature was derived from one-dimensional
signals. For two-dimensional signals, we can use “separable wavelet transform” to extend
one-dimensional wavelet transform into two-dimensional wavelet transform. Although
this method was used widely, it ignored the geometric properties of the
two-dimensional signal such as edges.
Since two-dimensional signals have more features, many researchers started to
propose a new transform such that the new transform not only has all features of the
wavelet transform but also exploit the properties of the two-dimensional signals. Furthermore,
the performance is better than that of the separable wavelet transform.
This thesis focuses on the ideas, advantages, and disadvantages of these new
transforms. After discussing these methods, we propose our method to improve the performance.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:55:53Z (GMT). No. of bitstreams: 1
ntu-97-R95942093-1.pdf: 4007543 bytes, checksum: d757b59516f9fb03b2de23cb18c8ccf4 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書...........................................................................................................#
誌謝...................................................................................................................................i
中文摘要......................................................................................................................... iii
ABSTRACT ......................................................................................................................v
Chapter 1 Introduction.....................................................................................................1
1.1 Motivation.......................................................................................................1
1.2 Related Work ..................................................................................................2
1.3 Thesis Outline.................................................................................................3
Chapter 2 Overview of the Wavelet Transform...............................................................5
2.1 History of the Wavelet Transform ..................................................................5
2.2 Continuous Wavelet Transform......................................................................5
2.3 Discrete Wavelet Transform .........................................................................10
2.4 Fast Wavelet Transform................................................................................17
2.5 Choice of the Wavelet Bases ........................................................................19
2.6 Common Implementations............................................................................22
2.7 2-D Separate Wavelet Transform..................................................................25
2.8 Setup of Compression Problems...................................................................26
2.9 Setup of Denoising Problems .......................................................................28
2.10 Disadvantages of Separable Wavelets ..........................................................29
2.11 Overview of Bandelets, Curvelets, and Contourlets.....................................31
2.11.1 Bandelets .............................................................................................31
2.11.2 Curvelets .............................................................................................31
viii
2.11.3 Contourlets ..........................................................................................32
Chapter 3 Bandelet Transform ......................................................................................33
3.1 Overview.......................................................................................................33
3.2 Experiments ..................................................................................................37
Chapter 4 Curvelet Transform.......................................................................................41
4.1 Overview.......................................................................................................41
4.2 Implementation Issues ..................................................................................46
4.2.1 USFFTs................................................................................................46
4.2.2 Wrapping.............................................................................................47
4.3 Experiments ..................................................................................................50
Chapter 5 Contourlet Transform ...................................................................................55
5.1 Overview.......................................................................................................55
5.2 Implementation Issues ..................................................................................58
5.2.1 McClellan Transform..........................................................................58
5.3 Experiments ..................................................................................................60
Chapter 6 Shearlet Transform and Applications............................................................67
6.1 Overview.......................................................................................................67
6.2 Shearlet Multiresolution Analysis.................................................................68
6.2.1 Adaptive Subdivision Schemes...........................................................69
6.2.2 Shearlet Multiresolution Analysis .......................................................72
6.3 Implementation Issues ..................................................................................73
6.4 Other wavelet-like transform........................................................................74
6.4.1 Fresnelets.............................................................................................74
6.4.2 Wedgelets ............................................................................................75
6.4.3 Brushlets..............................................................................................75
ix
6.5 Applications..................................................................................................75
6.5.1 Recognition .........................................................................................77
6.5.2 Image Fusion.......................................................................................78
6.5.3 Digital Watermarking..........................................................................80
Chapter 7 Theoretical Improvement..............................................................................83
7.1 Another approach to Construct Filter Banks ................................................83
7.2 Derivation of 2D wavelet transform.............................................................84
7.3 Construction of the Wavelet Filters ..............................................................88
Chapter 8 Practical Improvement..................................................................................93
8.1 Simple Observation ......................................................................................93
8.2 Proposed Algorithm......................................................................................94
8.2.1 Adaptive Segmentation .......................................................................94
8.2.2 Details of Step 2 and Step 3 ................................................................98
8.3 Discussion and Conclusions .......................................................................110
Chapter 9 Experiments ................................................................................................111
9.1 Comprehensive Comparison.......................................................................111
9.2 Simulation of Twisted Image......................................................................113
Chapter 10 Conclusions and Future Works ...................................................................115
10.1 Conclusions ................................................................................................115
10.2 Future Works...............................................................................................116
REFERENCE ................................................................................................................118
dc.language.isoen
dc.subject小波轉換zh_TW
dc.subject多重解析分析zh_TW
dc.subjectcontourlet transformen
dc.subjectmultiresolution analysisen
dc.subjectwavelet transformen
dc.subjectbandelet transformen
dc.subjectcurvelet transformen
dc.title一般化二維小波轉換及影像多重解析分析zh_TW
dc.titleMultiresolution Analysis for Image by Generalized 2-D Waveletsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭景明,葉敏宏,曾易聰
dc.subject.keyword多重解析分析,小波轉換,zh_TW
dc.subject.keywordmultiresolution analysis,wavelet transform,bandelet transform,curvelet transform,contourlet transform,en
dc.relation.page123
dc.rights.note有償授權
dc.date.accepted2008-06-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
3.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved