請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37993完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丘臺生(Tai-Sheng Chiu) | |
| dc.contributor.author | Ching-Huei Huang | en |
| dc.contributor.author | 黃慶輝 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:55:23Z | - |
| dc.date.available | 2008-06-24 | |
| dc.date.copyright | 2008-06-24 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-06-16 | |
| dc.identifier.citation | Anonymous. 2006. Fisheries Statistical Yearbook Taiwan, Kinmen and Matsu Area. Taipei: Fisheries Agency, Council of Agriculture, Executive Yuan.
Blaxter JHS, Hunter JR. 1982. The biology of the clupeoid fishes. Advances in Marine Biology. New York: Academic Press. Brothers EB, Mathews CP, Lasker R. 1976. Daily growth increments in otoliths from larval and adult fishes. Fishery Bulletin 74(1): 1-8. Campana SE. 1990. How reliable are growth back-calculations based on otoliths. Canadian Journal of Fisheries and Aquatic Sciences 47(11): 2219-2227. Campana SE, Neilson JD. 1985. Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences 42(5): 1014-1032. Carlstrom DD. 1963. Crystallographic study of vertebrate otoliths. Biological Bulletin 125(3): 441-463. Cermeno P, Uriarte A, de Murguia AM, Morales-Nin B. 2003. Validation of daily increment formation in otoliths of juvenile and adult European anchovy. Journal of Fish Biology 62(3): 679-691. Cheng TS. 1992. The anchovy resource in Taiwan. Report on Taiwan fisheries research institute. Keelung: Fisheries Research Institute, Council of Agriculture, Executive Yuan. [in Chinese]. Chiu TS, Chen CL, Young SS. 1999. Age and growth of two co-occurred anchovy species (Encrasicholina puntifer and E. heteroloba) during autumn larval anchovy fishing season in I-Ian Bay, NE Taiwan. Journal of the Fisheries Society of Taiwan 26(4): 183-190. Chiu TS, Young SS, Chen CS. 1997. Monthly variation of larval anchovy fishery in I-lan Bay, NE Taiwan, with an evaluation for optimal fishing season. Journal of the Fisheries Society of Taiwan 24(4): 273-282. Chiu TS, Chen CS. 2001. Growth and temporal variation of two Japanese anchovy cohorts during their recruitment to the East China Sea. Fisheries Research 53(1): 1-15. Deegan LA, Thompson BA. 1987. Growth rate and life history events of young-of-the-year Gulf Menhaden as determined from otoliths. Transactions of the American Fisheries Society. 116(4): 663-667. Degens ET, Deuser WG, Haedrich RL. 1969. Molecular structure and composition of fish otoliths. Marine Biology 2(2): 105-113. Dimmlich WF, Ward TM. 2006. Ontogenetic shifts in the distribution and reproductive patterns of Australian anchovy (Engraulis australis) determined by otolith microstructure analysis. Marine and Freshwater Research 57(4): 373-381. Emerson SB, Green HW, Charnov EL. 1994. Allometric aspects of predator–prey interactions. In: Wainwright, P.C., Reilly, S.M. (Eds.), Ecological Morphology. Integrative Organismal Biology. Chicago: University of Chicago Press. Francis R. 1990. Back-calculation of fish length - a critical review. Journal of Fish Biology 36(6): 883-902. Graynoth E. 1987. Growth of landlocked sockeye-salmon (Oncorhynchus nerka) in New-Zealand. New Zealand Journal of Marine and Freshwater Research 21(1): 15-30. Hare JA, Cowen RK. 1995. Effect of age, growth-rate, and ontogeny on the otolith size - fish size relationship in bluefish, Pomatomus saltatrix, and the implications for back-calculation of sire in fish early-life history stages. Canadian Journal of Fisheries and Aquatic Sciences 52(9): 1909-1922. Hoedt FE. 1992a. Age and growth of a large tropical anchovy, Thryssa hamiltoni (Gray) - a comparison of aging techniques. Australian Journal of Marine and Freshwater Research 43(5): 953-971. Hoedt FE. 1992b. Validation of daily growth increments in otoliths from Thryssa aestuaria (Ogilby), a tropical anchovy from northern Australia. Australian Journal of Marine and Freshwater Research 43(5): 1043-1050. Hoedt FE. 2002. Growth in eight species of tropical anchovy determined from primary otolith increments. Marine and Freshwater Research 53(5): 859-867. Hunt JJ. 1992. Morphological characteristics of otoliths for selected fish in the northwest Atlantic. Journal of Northwest Atlantic Fishery Science. 13:63-75. Hwang SD, Song MH, Lee TW, McFarlane GA, King JR.2006.Growth of larval Pacific anchovy Engraulis japonicus in the Yellow Sea as indicated by otolith microstructure analysis. Journal of Fish Biology 69(6):1756-1769. Jenkins GP. 1987. Age and growth of cooccurring larvae of 2 flounder species, Rhombosolea tapirina and Ammotretis rostratus. Marine Biology 95(2): 157-166. Lee MA, Lee KT. 1990. The larval anchovy fishing ground formation in relation to osmotic pressure changes of the coastal waters along southern Taiwan. Journal of the Fisheries Society of Taiwan 17(4): 233-246. Lombarte A. 1992. Changes in otolith area - sensory area ratio with body size and depth. Environmental biology of fishes 33(4): 405-410. Maack G, George MR. 1999. Contributions to the reproductive biology of Encrasicholina punctifer Fowler, 1938 (Engraulidae) from West Sumatra, Indonesia Fisheries Research 44(2): 113-120. May HMA, Jenkins GP. 1992. Patterns of settlement and growth of juvenile flounder Rhombosolea tapirina determined from otolith microstructure. Marine Ecology-Progress Series 79(3): 203-214. Methot RD. 1983. Seasonal-variation in survival of larval northern anchovy, Engraulis mordax, estimated from the age distribution of juveniles. Fishery Bulletin 81(4): 741-750. Methot RD, Kramer D. 1979. Growth of northern anchovy, Engraulis mordax, larvae in the sea. Fishery Bulletin 77(2): 413-423. Miller TJ, Crowder LB, Rice JA, Marschall EA. 1988. Larval size and recruitment mechanisms in fishes - toward a conceptual-framework. Canadian Journal of Fisheries and Aquatic Sciences 45(9): 1657-1670. Milton DA, Blaber SJM, Rawlinson NJF. 1991. Age and growth of three species of tuna baitfish (Genus Spratelloides) in the tropical Indo Pacific. Journal of Fish Biology 39(6): 849-866. Milton DA, Blaber SJM, Rawlinson NJF. 1993. Age and Growth of 3 Species of Clupeids from Kiribati, Tropical Central South Pacific. Journal of Fish Biology. 43(1): 89-108. Morales-Nin B. 2000. Review of the growth regulation processes of otolith daily increment formation. Fisheries Research 46(1-3): 53-67. Mugiya Y. 1987. Phase difference between calcification and organic matrix formation in the diurnal growth of otoliths in the rainbow-trout, Salmo gairdneri. Fishery Bulletin 85(3): 395-401. Nelson J. 1984. Fishes of the World. New York: Wiley-Interscience Publication. Pannella G. 1971. Fish otoliths - daily growth layers and periodical patterns. Science 173(4002): 1124-1127. Paulson AC, Smith RL. 1977. Latitudinal variation of pacific herring fecundity. Transactions of the American Fisheries Society 106(3): 244-247. Plaza G, Honda H, Sakaji H, Nashida K. 2005. Preparing sagittae for examination of daily growth increments of young-of-the-year fishes: a modification of the embed method. Journal of Fish Biology 66(2): 592-597. Plaza G, Honda H, Sakaji H, Nashida K.. 2006. Patterns of growth in the early life history of the round herring Etrumeus teres. Journal of Fish Biology 68(5): 1421-1435. Popper AN, Ramcharitar J, Campana, SE. 2005. Why otoliths? Insights from inner ear physiology and fisheries biology. Marine and Freshwater Research 56(5): 497-504. Qiu YS, Wang YZ, Chen ZZ. 2008. Runoff- and monsoon-driven variability of fish production in East China Seas. Estuarine, Coastal and Shelf Science 77(1): 23-34. Samsun O, Samsun N, Karamollaoglu AC. 2004. Age, growth, and mortality rates of the European anchovy (Engraulis encrasicolus L. 1758) off the Turkish Black Sea coast. Turkish Journal of Veterinary & Animal Sciences 28(5): 901-910. Secor DH, Dean JM. 1989. Somatic growth effects on the otolith - fish size relationship in young pond-reared striped bass, Morone saxatilis. Canadian Journal of Fisheries and Aquatic Sciences 46(1): 113-121. Secor DH, Dean JM. 1992. Comparison of otolith-based back-calculation methods to determine individual growth histories of larval striped bass, Morone saxatilis. Canadian Journal of Fisheries and Aquatic Sciences 49(7): 1439-1454. Secor DH, Dean JM, Laban EH. 1991. Otolith Removal and Preparation for Microstructural Examination: A Users Manual. California: The Electric Power Research Institute and the Belle W. Baruch Institute for Marine Biology and Coastal Research. Shen SC. 1969. Comparative study of the gill structure and feeding habits of the anchovy Engraulis japonica (HOUT). Bulletin of the Institute of Zoology, Academia Sinica 8(2): 21-35. Song ZB, Fu ZD, Yue BS, Zhao EM. 2006. Otolith microstructure of larval Gymnocypris potanini Herzenstein from the Minjiang River in China. Environmental Biology of Fishes 75(4): 431-438. Sponaugle S, Grorud-Colvert K, Pinkard D. 2006. Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Marine Ecology-Progress Series 308: 1-15. Struhsaker P, Uchiyama JH. 1976. Age and growth of nehu, Stolephorus purpureus (pisces Engraulidae), from Hawaiian-islands as indicated by daily growth increments of sagittae. Fishery Bulletin 74(1): 9-17. Takahashi M, Watanabe Y, Kinoshita T, Watanabe C. 2001. Growth of larval and early juvenile Japanese anchovy, Engraulis japonicus, in the Kuroshio-Oyashio transition region. Fisheries Oceanography 10(2): 235-247. Thorrold SR, Williams DM. 1989. Analysis of otolith microstructure to determine growth histories in larval cohorts of a tropical herring (Herklotsichthys castelnaui). Canadian Journal of Fisheries and Aquatic Sciences 46(9): 1615-1624. Townsend DW, Graham JJ. 1981. Growth and age structure of larval Atlantic herring, Clupea harengus, in the Sheepscot river estuary, Maine, as determined by daily growth increments in otoliths. Fishery Bulletin 79(1): 123-130. Tsuji S, Aoyama T. 1984. Daily growth increments in otoliths of Japanese anchovy larvae Engraulis japonica. Bulletin of the Japanese Society of Scientific Fisheries 50(7): 1105-1108. Waldron ME. 1994. Validation of annuli of the south-African anchovy, Engraulis capensis, using daily otolith growth increments. ICES Journal of Marine Science 51(2): 233-234. Wang YT, Tzeng WN. 1999. Differences in growth rates among cohorts of Encrasicholina punctifer and Engraulis japonicus larvae in the coastal waters off Tanshui River Estuary, Taiwan, as indicated by otolith microstructure analysis. Journal of Fish Biology 54(5): 1002-1016. Watanabe Y, Kuroki T. 1997. Asymptotic growth trajectories of larval sardine (Sardinops melanostictus) in the coastal waters off western Japan. Marine Biology 127(3): 369-378. Watanabe Y, Saito H. 1998. Feeding and growth of early juvenile Japanese sardines in the Pacific waters off central Japan. Journal of Fish Biology 52(3): 519-533. Whitehead PJP, Nelson GJ, Wongratana T. 1988. FAO Species Catalogue. Clupeoid fishes of the world (Suborder Clupeoidei) An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies, and wolf-herrings. Part 2. Engraulididae. FAO Fish Synopsis125. Rome: Food and Agriculture Organization of the United Nations. Young SS, Chen CC, Chiu TS. 1992. Resource characteristics of young herring-like fish in the I-Lan Bay area: Fishing season, major species and size variation. Journal of the Fisheries Society of Taiwan 19(4): 273-281. Young SS, Chiu TS, Shen SC. 1994. A revision of the family Engraulidae (pisces) from Taiwan. Zoological Studies 33(3): 217-227. Yu PT, Chiu TS. 1994. Fishery target species of larval anchovy fishery in the western central Taiwan. Journal of the Fisheries Society of Taiwan 21(3): 227-239. Zastrow CE, Houde ED, Morin LG. 1991. Spawning, fecundity, hatch date frequency and young-of-the-year growth of bay anchovy Anchoa mitchilli in Mid-Chesapeake bay. Marine Ecology Progress Series 73: 161-171. Zhang Z. 1992. Relationship of saccular ultrastructure to otolith growth in the teleost Oreochromis niloticus. Journal of Morphology 212(2): 99-107. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37993 | - |
| dc.description.abstract | 刺公鯷(Encrasicholina punctifer)為台灣沿岸水域常見的小型魚類,為魩仔漁業中重要的捕獲物種之一。 刺公鯷的外型和異葉公鯷(E. heteroloba)相似,兩物種經常於同地先後或同時出現。 先前對於刺公鯷年齡及成長的研究多限於30日齡內的階段(仔魚時期),對於30日齡以上的階段(稚魚時期),由於不是漁業之主要利用對象及漁具選擇性的關係,非魚網所能網羅,因此其在沿岸水域之成長狀態並不十分明瞭。 現今台灣的魩仔漁業資源處於過漁狀態,瞭解刺公鯷及相關魚種進入稚魚時期後的命運為一亟待探討的問題。
本研究為進一步探究刺公鯷稚魚階段的成長模式,於2002到2006年間,在屏東枋寮漁獲物中採集刺公鯷稚魚(耳石日齡判讀>30天),共獲得258尾標本。 標本經測量其標準長、體重之後觀察其卵巢成熟度,並取其耳石。 耳石經處理後,取其影像,判讀各日週輪,計算耳石之總輪數,並取得各日週輪直角切Sulcus軸(S-axis, SU)之相對位置座標。 由各點之座標經計算取得各日週輪間之輪寬,依時間序列逆算其孵化日期,並將逆算體長套適成長模式。 由結果顯示本採樣之範圍為31.1 – 78.8 mm 標準體長,孵化後生存日齡天數範圍為34 – 81天。 由孵化日之頻度分布顯示,刺公鯷之稚魚依其孵化時間可區分為春季群及秋季群。 由卵巢成熟度鑑定,兩亞成魚標本具有發育中的卵巢,推估刺公鯷至少需要十週(70 輪)以上的時間才能夠發育為具生殖力的個體。 以耳石輪寬時序列,逐一分析個體的成長事件,可以鑑識出尾脊索上屈期(flexion)及仔魚變態期(metamorphosis)。 由輪數–體長關係、SU–體長關係及逆推的體長–時間關係之變異數分析顯示,2003年與其他年間差異最顯著,其次為季節群之區分。 由此可分為三群:2003年年級群、春季群(2002及2004)及秋季群(2005及2006)。 由SU –體長關係估計三群的成長曲線發現,2003年仔魚期的生長速率為0.385 mm d-1,進入稚魚期後成長率會加快為1.675 mm d-1。 春季群在仔魚期的生長速率為0.469 mm d-1進入稚魚期後成長率會加快,為1.187 mm d-1。 秋季群由仔魚期進入稚魚期之成長速率則沒有太大的變化,為0.714 mm d-1。 總結台灣西南海域的刺公鯷其五十天內的成長率平均為0.758 mm d-1。 群間成長率差異推測可能是因為基因上、溫度及食物供應水平的影響,且由枋寮港附近林邊溪的歷年流量推知營養可能佔較大的因素。 刺公鯷的成長率、成熟度與其他熱帶的鯡亞目相近,具演化之保守性(coservatism),由這些相近物種的成長曲線可推測其壽命大約在五個月左右。 | zh_TW |
| dc.description.abstract | Arrow anchovy (Encrasicholina punctifer) is one of the major species caught by coastal fisheries in Taiwan. The morphology of arrow anchovy is similar to its congener E. heteroloba, which is also caught jointly most of time. Previous fisheries studies focused on the larval stages that were less than 30 days and thus hardly data are available for the growth pattern of anchovy after this stage. However, for understanding the resource, investigate what the ecological fate of the survival population is after local exploitation becomes a common need for conservation management purpose.
In order to explore the growth pattern after larval stage, 258 specimens of juvenile arrow anchovy (>30 days) from the waters off southwestern Taiwan (Fang-liao) during 2002 and 2006 were collected. For each specimen, standard length (SL) and body weight (BM) were taken, maturity stage was extracted, and sagitta was picked for microstructure analysis. The length composition of specimens ranged 31.1 - 78.8 mm SL, with an age ranged from 34 to 81 days. Based on frequency of back-estimated hatching date, two cohorts of spring and autumn were discerned. Shown by two specimens having developing ovaries, and thus postulated that more than 10 weeks were about to reach adult stage. Four typical growth patterns described by having checks of notochord flexion and metamorphosis or not, were adopted to quantify group differences. Based on the analysis of variances applied to, 1) the relationships of increment counts versus standard length (SL), 2) the size of sagitta versus SL, and 3) array of backcalculated size-at-age, that 2003 annual group had the primary difference from other year's samples, while the spring cohort and autumn cohort had secondary seasonal variations. The result indicated that the growth rate of 2003 group was 0.385 mm d-1 for larvae and 1.675 mm d-1 for juvenile, respectively. For spring cohorts of 2002 and 2004, at larval stages the growth rate was 0.469 mm d-1 and juvenile period 1.187 mm d-1. Since a continuous growth from larval to juvenile was found in the autumn cohorts of 2005 and 2006, the overall growth rate was estimated to 0.714 m mm d-1 as whole. In summary, the average growth rate of juvenile anchovy was 0.758 mm d-1 in the waters off the southwestern Taiwan. The differences among groups may ascribe to the genetic variation, and ambient environment factors, such as temperature and ration levels. Local river runoff was used to mimic an average ration level to access the cause of growth difference. In case of clupeoid's evolutionary conservation in demographic traits, E. punctifer is considered to live up to about 5 months. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:55:23Z (GMT). No. of bitstreams: 1 ntu-97-R95b41017-1.pdf: 818216 bytes, checksum: cfdc174876f116d44210bd41aa11ccfc (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Contents I
中文摘要 III Abstract V 1. Introduction 1.1 Anchovy fishery in Taiwan 1 1.2 Species and taxonomy 3 1.3 Feeding 4 1.4 Reproduction 4 1.5 Otolith and daily rings 5 1.6 Growth 6 1.7 Catch variation in recent years and fishery management 7 1.8 Objective of study 8 2. Materials and Methods 2.1 Sample collection 9 2.2 Sample preparation 9 2.3 Otolith embedding and polishing 9 2.4 Otolith rings reading and measuring 10 2.5 Data analysis 11 2.6 Backcalculation 12 3. Results 3.1 Hatching dates and cohorts 14 3.2 Age and puberty 14 3.3 Growth pattern analysis 15 3.3.1 Frequency of growth types 15 3.3.2 Duration of growth period 16 3.4 The relationships of otolith features and body size 16 3.4.1 Number of otolith increments and standard length 16 3.4.2 Sulcus oriented axis and standard length 17 3.4.3 Lengths of sagitta radius, sulcus oriented axis, and area of sagitta 18 3.5 Estimated daily growth 19 3.5.1 Growth estimation 19 3.5.2 Absolute growth 20 3.5.3 Relative growth 21 3.6 Growth curves 22 4. Discussion 4.1 The signatures of fish growth in otolith 24 4.1.1 Growth directions 24 4.1.2 Using of recent growth to estimate early growth 25 4.2 Growth differences 26 4.2.1 Growth variation between spring and autumn cohorts 26 4.2.2 Growth of 2003 annual group 27 4.2.3 Accretion of otolith of each juvenile 28 4.3 Daily checks 28 4.4 Growth curves 29 4.5 Life history traits and conservative biology 30 4.6 Suggestions for fisheries management 31 5. References 33 Tables 38 Figure Legend 54 Figures 56 | |
| dc.language.iso | en | |
| dc.subject | 成長 | zh_TW |
| dc.subject | 稚魚 | zh_TW |
| dc.subject | 鯷魚 | zh_TW |
| dc.subject | 刺公鯷 | zh_TW |
| dc.subject | 耳石 | zh_TW |
| dc.subject | 日齡 | zh_TW |
| dc.subject | anchovy | en |
| dc.subject | juvenile | en |
| dc.subject | growth | en |
| dc.subject | age | en |
| dc.subject | otolith | en |
| dc.subject | Encrasicholina punctifer | en |
| dc.title | 台灣西南海域刺公鯷稚魚之日成長模式 | zh_TW |
| dc.title | Daily Growth Pattern of Encrasicholina punctifer from Larval to Juvenile Stage in the Waters Southwest off Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹榮桂(Rong-Quen Jan),李明安(Ming-An Lee),陳志炘(Chih-Shin Chen),謝志豪(Chih-Hao Hsieh) | |
| dc.subject.keyword | 鯷魚,刺公鯷,耳石,日齡,成長,稚魚, | zh_TW |
| dc.subject.keyword | anchovy,Encrasicholina punctifer,otolith,age,growth,juvenile, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-06-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 799.04 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
