請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37991
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾雪峰 | |
dc.contributor.author | Hung-Hsin Tsai | en |
dc.contributor.author | 蔡宏鑫 | zh_TW |
dc.date.accessioned | 2021-06-13T15:55:16Z | - |
dc.date.available | 2008-07-10 | |
dc.date.copyright | 2008-07-10 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-06-16 | |
dc.identifier.citation | [1] C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
[2] C. L. Haynes, and R. P. Van Duyne, 'Plasmon-sampled surface-enhanced Raman excitation spectroscopy,' Journal of Physical Chemistry B 107, 7426-7433 (2003). [3] A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-Domain Method (Artech House Publishers, 2005). [4] G. Mie, 'Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,' Annalen Der Physik 25, 377-445 (1908). [5] W. B. Sun, N. G. Loeb, and Q. Fu, 'Light scattering by coated sphere immersed in absorbing medium: a comparison between the FDTD and analytic solutions,' Journal of Quantitative Spectroscopy & Radiative Transfer 83, 483-492 (2004). [6] R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, 'Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,' Journal of Biomedical Optics 8, 7-16 (2003). [7] C. S. A. Dunn, A. J. Welch and R. Richards-Kortum, 'Light scattering from cells,' OSA Technical Digest —Biomedical Optical Spectroscopy and Diagnostics, 50-52 (1996). [8] R. W. Wood, 'A suspected case of the electrical resonance of minute metal particles for light-waves. A new type of absorption,' Philosophical Magazine 3, 396-410 (1902). [9] U. Fano, 'The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves),' Journal of the Optical Society of America 31, 213-222 (1941). [10] E. A. Stern, and R. A. Ferrell, 'Surface Plasma Oscillations of a Degenerate Electron Gas,' Physical Review 120, 130-136 (1960). [11] S. Link, and M. A. El-Sayed, 'Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,' Journal of Physical Chemistry B 103, 8410-8426 (1999). [12] S. Kalele, S. W. Gosavi, J. Urban, and S. K. Kulkarni, 'Nanoshell particles: synthesis, properties and applications,' Current Science 91, 1038-1052 (2006). [13] S. Link, and M. A. El-Sayed, 'Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,' International Reviews in Physical Chemistry 19, 409-453 (2000). [14] A. Graff, D. Wagner, H. Ditlbacher, and U. Kreibig, 'Silver nanowires,' European Physical Journal D 34, 263-269 (2005). [15] F. Hubenthal, T. Ziegler, C. Hendrich, M. Alschinger, and F. Trager, 'Tuning the surface plasmon resonance by preparation of gold-core/silver-shell and alloy nanoparticles,' European Physical Journal D 34, 165-168 (2005). [16] S. A. Maier, P. G. Kik, and H. A. Atwater, 'Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,' Applied Physics Letters 81, 1714-1716 (2002). [17] K. A. Hultborn, L. G. Larsson, and I. Ragnhult, 'The Lymph Drainage from the Breast to the Axillary and Parasternal Lymph Nodes, Studied with the Aid of Colloidal Au-198,' Acta Radiologica 43, 52-64 (1955). [18] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, 'Raman-Spectra of Pyridine Adsorbed at a Silver Electrode,' Chemical Physics Letters 26, 163-166 (1974). [19] D. L. Jeanmaire, and R. P. Vanduyne, 'Surface Raman Spectroelectrochemistry .1. Heterocyclic, Aromatic, and Aliphatic-Amines Adsorbed on Anodized Silver Electrode,' Journal of Electroanalytical Chemistry 84, 1-20 (1977). [20] C. S. Holgate, P. Jackson, P. N. Cowen, and C. C. Bird, 'Immunogold Silver Staining - New Method of Immunostaining with Enhanced Sensitivity,' Journal of Histochemistry & Cytochemistry 31, 938-944 (1983). [21] P. M. Lackie, 'Immunogold silver staining for light microscopy,' Histochemistry and Cell Biology 106, 9-17 (1996). [22] K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, 'Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,' Cancer Research 63, 1999-2004 (2003). [23] I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, 'Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,' Nano Letters 5, 829-834 (2005). [24] C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, 'Immunotargeted nanoshells for integrated cancer imaging and therapy,' Nano Letters 5, 709-711 (2005). [25] S. Tanev, V. V. Tuchin, and P. Paddon, 'Cell membrane and gold nanoparticles effects on optical immersion experiments with noncancerous and cancerous cells: finite-difference time-domain modeling,' Journal of Biomedical Optics 11, 064037 (2006). [26] V. V. Tuchin, 'Optical clearing of tissues and blood using the immersion method,' Journal of Physics D-Applied Physics 38, 2497-2518 (2005). [27] X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, 'Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,' Journal of the American Chemical Society 128, 2115-2120 (2006). [28] P. G. Etchegoin, E. C. Le Ru, and M. Meyer, 'An analytic model for the optical properties of gold,' Journal of Chemical Physics 125, 164705 (2006). [29] P. B. Johnson, and R. W. Christy, 'Optical-Constants of Noble-Metals,' Physical Review B 6, 4370-4379 (1972). [30] S. Kawata, Near-field Optics and Surface Plasmon Polaritons (Springer, 2001). [31] W. L. Barnes, A. Dereux, and T. W. Ebbesen, 'Surface plasmon subwavelength optics,' Nature 424, 824-830 (2003). [32] 邱國斌, 蔡定平, 物理雙月刊 28卷第二期, 472-483 (2006). [33] J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941). [34] R. I. Nicholson, J. M. W. Gee, and M. E. Harper, 'EGFR and cancer prognosis,' European Journal of Cancer 37, S9-S15 (2001). [35] Y. P. Rakovich, J. F. Donegan, S. A. Filonovich, M. J. M. Gomes, D. V. Talapin, A. L. Rogach, and A. Eychmuller, 'Up-conversion luminescence via a below-gap state in CdSe/ZnS quantum dots,' Physica E-Low-Dimensional Systems & Nanostructures 17, 99-100 (2003). [36] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, 'Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,' Small 1, 325-327 (2005). [37] H. S. Wiley, 'Anomalous Binding of Epidermal Growth-Factor to A431 Cells Is Due to the Effect of High Receptor Densities and a Saturable Endocytic System,' Journal of Cell Biology 107, 801-810 (1988). [38] K. S. Yee, 'Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media,' IEEE Transactions on Antennas and Propagation AP14, 302-307 (1966). [39] 鐘煒竣, '以時域有限差分法模擬二維奈米金屬粒子之表面電漿共振現象,' 光電工程學研究所(國立台灣大學, 2007). [40] G. Mur, 'Absorbing Boundary-Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,' Ieee Transactions on Electromagnetic Compatibility 23, 377-382 (1981). [41] Z. P. Liao, H. L. Wong, B. Yang, and Y. Yuan, 'A Transmitting Boundary for Transient Wave Analyses,' Scientia Sinica Series a-Mathematical Physical Astronomical & Technical Sciences 27, 1063-1076 (1984). [42] J. P. Berenger, 'A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves,' Journal of Computational Physics 114, 185-200 (1994). [43] A. Vial, 'Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method,' Journal of Optics a-Pure and Applied Optics 9, 745-748 (2007). [44] A. Vial, A. S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, 'Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,' Physical Review B 71, 085416 (2005). [45] R. Drezek, A. Dunn, and R. Richards-Kortum, 'Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,' Applied Optics 38, 3651-3661 (1999). [46] N. Halas, 'Playing with plasmons. Tuning the optical resonant properties of metallic nanoshells,' MRS Bulletin 30, 362-367 (2005). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37991 | - |
dc.description.abstract | 金屬表面的自由電子在適當的電磁波激發下,自由電子將會與電磁波耦合產生集體震盪的行為,此即所謂的表面電漿共振(surface plasmon resonance),其發生於金屬與介質交界面。表面電漿共振會因奈米粒子在不同形狀、大小下使金屬具有不同的光學特性。根據文獻記載,許多的癌細胞將會在細胞表面累積大量的表皮細胞生長因子接受體(epidermal growth factor receptor:EGFR),實驗上可利用抗體先與金屬奈米粒子結合,由於抗會體針對EGFR結合,且正常細胞和癌細胞的EGFR數目差異很大,故可標定細胞,而標定後的細胞在光譜或是影像上將會有很大的差異。
本論文使用時域有限差分法(finite-difference time-domain method),探討奈米粒子在細胞中造成的光學現象。本論文分析在不同金粒子大小下,奈米粒子在正常細胞與癌細胞中的光散射現象與對比度的影響;並探討使用OIT法(optical immersion technique)對於對比度的影響;與不同殼層厚度的二氧化矽/金奈米殼層粒子在細胞中所造成光散射現象的差異。金屬奈米粒子具備光學性質穩定、不會有光漂白(photobleaching)的現象,尤其是金(gold)具有對人體無毒性的優點,因此在生物細胞標定上的應用非常具有潛力。 | zh_TW |
dc.description.abstract | Surface plasmon resonance (SPR) is a phenomenon of free electrons on the surface of metal coupled to the electromagnetic excitations exhibiting coherent collective oscillations. The optical properties of SPR of metal are sensitive to particle size, shape and the surrounding medium. The SPR of metal nanoparticles have special optical properties that can be applied for biomedical applications; nanoparticles can be conjugated with anti-epidermal growth factor receptor (anti-EGFR) antibodies that bind specifically to the cells due to the overexpressed EGFR on the cytoplasmic membrane of the cancerous cells. In this research, we build a simple model to describe the nanoparticles’ distribution in cancerous and normal cells. The finite-difference time-domain (FDTD) method and the Drude-CP (Drude-critical point) model are employed to simulate the nanoparticles in the biological cells. The calculation of total scattering cross-section (TSCS) spectrum and intensity contrast of nanoparticles in cancerous and normal cells, respectively, are compared. The optical immersion technique (OIT) effect of contrast is discussed. The silica/gold nanoshells in cells with different thickness of shells are also compared. Metal nanoparticles are in general optically stable, and resistive to photobleaching. In particular, gold nanoparticles are toxic-free, which makes them very suitable for human body. Therefore, metal nanoparticles have potential for labeling of biological cells and other applications. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:55:16Z (GMT). No. of bitstreams: 1 ntu-97-R95941079-1.pdf: 1567110 bytes, checksum: fa921e6a7fa43be4c7f5ae699875aec4 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書 Ⅰ
誌謝 Ⅱ 中文摘要 Ⅲ 英文摘要 Ⅳ 目錄 Ⅴ 圖目錄 Ⅶ 表目錄 ⅩⅠ 第一章 序論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 本文內容 4 第二章 光與物質之交互作用 5 2.1 金屬的介電常數 5 2.2 表面電漿子(Surface Plasmon Polariton) 7 2.3 侷域性表面電漿子(Localized Surface Plasmon) 11 第三章 奈米粒子與生物細胞 14 3.1 簡介光學染劑 14 3.2 奈米粒子標定癌細胞之方法 16 3.3 建立奈米粒子在細胞中的分佈模型 19 第四章 時域有限差分法 21 4.1 FDTD演算法 21 4.2 Courant穩定準則 27 4.3 總場/散射場(Total-Field/Scattered-Field, TF/SF) 28 4.4 完美吸收邊界(PML) 30 4.5 近場至遠場轉換(Near-to-Far-Field Transformation) 33 4.6 Drude-CP model 36 第五章 數值模擬結果與分析 41 5.1 金奈米粒子在細胞中的影響 42 5.2 不同金奈米粒子的大小對TSCS頻譜與對比度的影響 49 5.3 OIT方法對於TSCS頻譜與對比度的影響 56 5.4 Nanoshells在細胞中對光散射的影響 59 第六章 結論與未來展望 65 6.1 結論 65 6.2 未來展望 66 參考文獻 67 | |
dc.language.iso | zh-TW | |
dc.title | 金奈米粒子應用於細胞標定之模擬與分析 | zh_TW |
dc.title | Simulation and Analysis of Cellular Labeling with Gold Nanoparticles | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江衍偉,張世慧 | |
dc.subject.keyword | 時域有限差分法,表面電漿共振,金,奈米粒子,奈米殼層粒子,細胞標定, | zh_TW |
dc.subject.keyword | FDTD method,Drude-CP model,surface plasmon resonance,gold,nanoparticles,nanoshells,cellular labeling, | en |
dc.relation.page | 71 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-06-17 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。