Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37950
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光
dc.contributor.authorChia-Wei Huen
dc.contributor.author胡家瑋zh_TW
dc.date.accessioned2021-06-13T15:52:56Z-
dc.date.available2011-08-16
dc.date.copyright2011-08-16
dc.date.issued2011
dc.date.submitted2011-08-09
dc.identifier.citation[1] E. CRAWLEY and D. Luis, 'Use of piezoelectric actuators as elements of intelligent structures,' AIAA journal, vol. 25, pp. 1373-1385, 1987.
[2] N. Hagood and A. von Flotow, 'Damping of structural vibrations with piezoelectric materials and passive electrical networks,' Journal of Sound and Vibration, vol. 146, pp. 243-268, 1991.
[3] S. Wu, 'Piezoelectric shunts with a parallel RL circuit for structural damping and vibration control,' 1996, p. 259.
[4] C. H. Park and D. J. Inman, 'Enhanced piezoelectric shunt design,' Shock and Vibration, vol. 10, pp. 127-134, 2003.
[5] J. J. Hollkamp, 'Multimodal passive vibration suppression with piezoelectric materials and resonant shunts,' Journal of Intelligent Material Systems and Structures, vol. 5, p. 49, 1994.
[6] S. Y. Wu, 'Method for multiple-mode shunt damping of structural vibration using a single PZT transducer,' 1998, p. 159.
[7] S. Wu, 'Piezoelectric shunts for simultaneous vibration reduction and damping of multiple vibration modes,' ed: US Patent 5,783,898, 1998.
[8] C. L. Davis and G. A. Lesieutre, 'Actively tuned solid state piezoelectric vibration absorber,' 1998, p. 169.
[9] C. Maurini and M. Porfiri, 'Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation,' Smart Materials and Structures, vol. 13, p. 299, 2004.
[10] W. W. Clark, 'Vibration control with state-switched piezoelectric materials,' Journal of Intelligent Material Systems and Structures, vol. 11, p. 263, 2000.
[11] C. Richard, et al., 'Semi-passive damping using continuous switching of a piezoelectric device,' 1999, p. 104.
[12] C. Richard, et al., 'Enhanced semi-passive damping using continuous switching of a piezoelectric device on an inductor,' 2000, p. 288.
[13] E. Lefeuvre, et al., 'Semi-passive piezoelectric structural damping by synchronized switching on voltage sources,' Journal of Intelligent Material Systems and Structures, vol. 17, pp. 653-660, 2006.
[14] M. Lallart, et al., 'Nonlinear semi-active damping using constant or adaptive voltage sources: A stability analysis,' Journal of Intelligent Material Systems and Structures, vol. 19, pp. 1131-1142, 2008.
[15] M. Lallart, et al., 'Self-powered circuit for broadband, multimodal piezoelectric vibration control,' Sensors and Actuators a-Physical, vol. 143, pp. 377-382, 2008.
[16] L. R. Corr and W. W. Clark, 'Comparison of low-frequency piezoelectric switching shunt techniques for structural damping,' Smart Materials and Structures, vol. 11, p. 370, 2002.
[17] L. Gaudiller and J. Der Hagopian, 'Active control of flexible structures using a minimum number of components,' Journal of Sound and Vibration, vol. 193, pp. 713-741, 1996.
[18] M. J. Balas, 'Direct output feedback control of large space structures,' Journal of Astronautical Sciences, vol. 27, pp. 157-180, 1979.
[19] D. Halim and S. O. R. Moheimani, 'Spatial resonant control of flexible structures-application to a piezoelectric laminate beam,' Control Systems Technology, IEEE Transactions on, vol. 9, pp. 37-53, 2001.
[20] H. Pota, et al., 'Resonant controllers for smart structures,' Smart Materials and Structures, vol. 11, p. 1, 2002.
[21] H. Tjahyadi, et al., 'Multi-mode vibration control of a flexible cantilever beam using adaptive resonant control,' Smart Materials and Structures, vol. 15, p. 270, 2006.
[22] L. Meirovitch and L. Silverberg, 'Control of non-self-adjoint distributed-parameter systems,' Journal of optimization theory and applications, vol. 47, pp. 77-90, 1985.
[23] J. Fanson and T. K. Caughey, 'Positive position feedback control for large space structures,' AIAA journal, vol. 28, pp. 717-724, 1990.
[24] I. Gresham, et al., 'Ultra-wideband radar sensors for short-range vehicular applications,' Microwave Theory and Techniques, IEEE Transactions on, vol. 52, pp. 2105-2122, 2004.
[25] A. J. Moulson and J. M. Herbert, Electroceramics: materials, properties, applications: John Wiley & Sons Inc, 2003.
[26] 吳朗, 電子陶瓷: 全新科技圖書, 1994.
[27] 郭建志, '高分子的高科技應用,' 台北高立圖書有限公司, pp. 58-61, 1991.
[28] H. W. Katz, Solid state magnetic and dielectric devices: Wiley, 1959.
[29] H. F. Tiersten, Linear Piezoelectric Plate Vibrations. New York: Plenum Press, 1969.
[30] C. Rosen, et al., 'IEEE standard on piezoelectricity (ANSI/IEEE Standard 176-1987 1988),' Piezoelectricity (American Institute of Physics, New York), p. 227!V228.
[31] C. K. Lee, et al., 'Piezoelectric modal sensor/actuator pairs for critical active damping vibration control,' The Journal of the Acoustical Society of America, vol. 90, p. 374, 1991.
[32] H. Jaffe and D. Berlincourt, 'Piezoelectric transducer materials,' Proceedings of the IEEE, vol. 53, pp. 1372-1386, 1965.
[33] D. A. Berlincourt, et al., 'Piezoelectric and piezomagnetic materials and their function in transducers,' Physical acoustics, vol. 1, pp. 169-270, 1964.
[34] K. Van Dyke, 'The electric network equivalent of a piezoelectric resonator,' Phys. Rev, vol. 25, p. 895, 1925.
[35] A. Badel, et al., 'Piezoelectric vibration control by synchronized switching on adaptive voltage sources: Towards wideband semi-active damping,' The Journal of the Acoustical Society of America, vol. 119, p. 2815, 2006.
[36] Y. P. Liu, et al., 'Velocity-Controlled Switching Piezoelectric Damping based on Maximum Power Factor Tracking and Work Cycle Observation,' presented at the 19 th International Conference on Adaptive Structures and Technologies, Ascona, Switzerland, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37950-
dc.description.abstract本研究以車用倒車雷達的超音波測距感測器為電路負載,利用切換式電路驅動超音波測距感測器,了解壓電材料在電能與機械能之間的轉換特性。依據超音波測距感測器電訊號的變化可分為驅動、殘響及回波三大階段。驅動電路由切換式主動開關與中週變壓器所組成,本研究將完整建立感測器及中週變壓器的等效電路模型,加以分析中週變壓器等效電路參數與超音波測距感測器驅動訊號之間的關係。
  因壓電材料具有力、電耦合特性,本論文設計阻尼控制電路,以消散在驅動訊號結束後的機械振動能量。自適性速度控制阻尼電路將整併於倒車雷達驅動電路中,設計開關訊號切換倒車雷達的驅動與殘響抑制階段。以外加電容做為自適性電源因此不需額外電壓源,且電容電壓值可隨著振動訊號改變,當結構的振動較小時,自適性電容的電壓值同時變小。論文中將以理論與模擬分析,建立最佳化的自適性電容參數,使受控結構在振動停止時電容電壓亦完全放電。由實驗結果可知,當選取自適性電容值過大時,將造成電壓能量回流使得受控系統不穩定。
  在倒車雷達的回波訊號擷取階段,當倒車雷達發射超音波訊號經過空氣衰減後,使得回波訊號振幅減小,容易被雜訊覆蓋。實驗以資料擷取卡(DAQ)採集回波訊號,同時設計虛擬儀控軟體(LabVIEW)進行數位訊號處理,進而獲得與驅動訊號相同頻率的回波訊號,超音波在空氣中傳遞所需的時間以及殘響時間皆可以利用此LabVIEW計算而得,藉此提升判斷倒車雷達效能的準確性。
  本論文目標為改善超音波測距感測器的驅動電路效能及減小殘響時間,首先以理論分析各階段的電路設計及驗證其可行性,接著透過電路模擬軟體PSIM進行實驗結果的預測,最後以實驗驗證其可達成超音波測距感測器控制與效能提升的結果。
zh_TW
dc.description.abstractThis thesis dedicated on investigating the ultrasonic ranging sensor driving circuit which is used in surrounding obstacles detection for automobiles. The driving circuit of ultrasonic ranging sensor is mainly constructed by full-bridge switches. The characteristic of piezoelectric transducer is the mechanism of converting electrical energy to and from mechanical energy. The ultrasonic ranging sensor driving and sensing operation is composed of three phases, which are driving stage, reverberation stage, and ultrasonic echo receiving stage. The driving stage in the circuit is consisted of active switches and intermediate frequency transformer. This research will demonstrate the equivalent circuit of the sensor including the intermediate frequency transformer, and will show the relevance of intermediate frequency transformer and ultrasonic ranging sensor.
  In the reverberation stage, the adaptive velocity controlled piezoelectric active switching damping circuit (Adaptive VPSD) is used to dissipate the vibration energy of structure in the transient stage after the driving signal is stopped. In addition, Adaptive VPSD exhibits no requirements of additional power supply and offers advantages of adaptive voltage source with variation of vibration levels. In order to maximize power dissipation and attenuate the instabilities of Adaptive VPSD, the complete theoretical and simulation model will be proposed and verified. The key parameters of the system include the capacitance value for adaptive damping control will then be derived with this model and verified by simulation.
  In the ultrasonic echo receiving stage, the amplitude of ultrasonic echo is much smaller than the transmitted wave in the driving stage. The echo signal can be accesses through a data acquisition (DAQ) card on a computer from the output of operational amplifiers. This experiment will acquire and further process ultrasonic echo signal with a computer program written with LabVIEW. The reverberation time, time-of-flight of the echo signal can all be obtained from the LabVIEW program.
  The purpose of this work is to improve the efficiency of driving circuit and reduce the reverberation time of ultrasonic ranging sensor. In this thesis, theoretical analysis will first be conducted to explain the feasibility of design. PSIM, a circuit simulation software, was used to predict the experimental result. The theoretical models, simulation results, and experiment verification will all be detailed and discussed in this study.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:52:56Z (GMT). No. of bitstreams: 1
ntu-100-R98543032-1.pdf: 4152544 bytes, checksum: 9c53a8a61d51f2a93d090a77376ebb6d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 研究動機 1
1.2 論文目標 8
1.3 論文架構 10
第二章 簡介 12
2.1 壓電材料特性 12
2.2 壓電材料組成律 15
2.2.1 磁滯效應 15
2.2.2 本構方程式 16
2.2.3 壓電常數 20
2.3 壓電等效電路 22
2.3.1 靜態機電耦合係數 22
2.3.2 動態機電耦合係數 23
2.3.3 壓電等效電路 23
第三章 返馳式電源轉換器 26
3.1 返馳式電源轉換器工作原理 26
3.2 變壓器模型分析 30
3.2.1 中週變壓器特性 30
3.2.2 變壓器等效電路 31
3.3 返馳式轉換器理論模型 33
3.3.1 電路設計 33
3.3.2 狀態空間模型 36
3.4 電路模擬結果 43
第四章 切換式振動控制 46
4.1 切換式振動控制簡介 46
4.2 機電理論模型 51
4.2.1 閉路狀態 53
4.2.2 開路狀態 53
4.2.3 自適性速度控制切換阻尼系統(Adaptive VPSD) 54
4.3 自適性速度控制切換阻尼系統理論模型 55
4.4 自適性電壓源設計與模擬 58
第五章 實驗結果與討論 63
5.1 實驗系統架設 63
5.1.1 倒車雷達驅動與殘響抑制電路 63
5.1.2 LabVIEW開關訊號設計與產生 69
5.1.3 回波訊號偵測與擷取 71
5.2 驅動電路效能之實驗結果與討論 77
5.3 自適性電壓源抑制倒車雷達振動實驗結果與討論 84
第六章 結論與未來展望 91
6.1 結論 91
6.2 未來展望 92
參考文獻 93
dc.language.isozh-TW
dc.subject振動控制zh_TW
dc.subject超音波測距感測器zh_TW
dc.subject主動式zh_TW
dc.subject半主動式zh_TW
dc.subject切換阻尼電路zh_TW
dc.subjectswitching dampingen
dc.subjectUltrasonic ranging sensoren
dc.subjectvibration controlen
dc.subjectactiveen
dc.subjectsemi-activeen
dc.title切換式電路應用於超音波感測器訊號控制與效能提升zh_TW
dc.titleThe Improvement of Ultrasonic Sensor by Switching Circuit Controlen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor吳文中
dc.contributor.oralexamcommittee林致廷,張鳴助
dc.subject.keyword超音波測距感測器,振動控制,主動式,半主動式,切換阻尼電路,zh_TW
dc.subject.keywordUltrasonic ranging sensor,vibration control,active,semi-active,switching damping,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2011-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
4.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved