Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37936
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王振男(Jenn-Nan Wang)
dc.contributor.authorRu-Lin Kuanen
dc.contributor.author關汝琳zh_TW
dc.date.accessioned2021-06-13T15:52:07Z-
dc.date.available2008-07-03
dc.date.copyright2008-07-03
dc.date.issued2008
dc.date.submitted2008-06-25
dc.identifier.citation[1] C. Alvarez, C. Conca, L. Friz, O. Kavian and J. H. Ortega, Identification of
Immersed Obstacles Via Boundary Measurements, Inverse Problems 21 (2005),
1531-1552.
[2] Toshiaki Hishida, An Existence Theorem for the Navier-Stokes Flow in the
Exterior of Rotating Obstacle, Arch. Rational Mech. Anal. 150 (1999), 307-
348.
[3] H.P.Greenspan, The Theory of Rotating Fluids, Cambridge University Press,
London, 1969.
[4] Giovanni P. Galdi et. al(Eds.), Fundamental Directions in Mathematical Fluid
Mechanics, Birkhauser, Basel, 2000.
[5] Roger Temam, Navier-Stokes equations : theory and numerical analysis, North-
Holland Pub. Co., New York, 1977.
[6] Fabre C. and Lebeau G., Prolongement unique des solutions de l’´equation de
Stokes, Commun. Part. Diff. Eqns 21 (1996), 573-596.
[7] Jin Kim Tu and Chang Qianshun, Remark on unique continuation of solutions
to the Stokes and the Navier-Stokes equations, Acta Math. Sci. Ser. B Engl.
Ed. 25 (2005), no. 4, 594-598.
[8] He, Cheng, The initial-boundary value problem for Navier-Stokes equations,
Acta Math. Sin. (Engl. Ser.) 15 (1999), no. 2, 153–164.
[9] O A Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,
Gordon and Breach, 1969.
[10] Tosio Kato and Gustavo Ponce, Commutater estimates and the Euler and
Navier-Stokes equations,Communications on Pure and Applied Mathematics 41
(1988), 891-907.
[11] Galdi, Giovanni P, An introduction to the mathematical theory of the Navier-
Stokes equations. Vol. I. Linearized steady problems, Springer Tracts in Natural
Philosophy, 38. Springer-Verlag, New York, 1994.
[12] Galdi, Giovanni P, An introduction to the mathematical theory of the Navier-
Stokes equations. Vol. II. Nonlinear steady problems, Springer Tracts in Natural
Philosophy, 39. Springer-Verlag, New York, 1994.
[13] Evans, Lawrence C, Partial differential equations. Graduate Studies in Mathematics,
19. American Mathematical Society, Providence, RI, 1998.
[14] G. Stampacchia, Equations elliptiques du second ordre `a coefficients discontinus
, Presses de I’Universit´e de Montr´eal, 1996.
[15] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and
applications, Springer-Verlag, New York, 1972.
[16] Peter D. Lax, Functional Analysis, John Wiley & Sons, Canada.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37936-
dc.description.abstract我們討論這個問題:在一個不可壓縮流體的流域中,我們能不能確定流體中的旋轉障礙物的位置和形狀?我們只考慮2維跟3維情況。
事實上我們只能解決部分的問題.非旋轉障礙物的確定已經在前輩的文章中完成.但旋轉的情況又更加困難,必須增加其他的條件才能確立。首先,為了簡化我們的問題,我們只考慮旋轉不變的流域。這個意思是說,我們先假設這裏的旋轉指的是繞著z軸旋轉。也就是說,確定一個繞著z軸旋轉的障礙物在繞著z軸旋轉不變的流域(例如:圓柱)中。如果我們給一個流域的邊界值f, f對時間微分不為零且f(x,t)=h(t)g(x),並增加其他保證方程有解的條件,則我們就可以確定這個旋轉中的障礙物。在本文中我們只考慮的方程式線性化的Navier-Stokes方程,若是非線性的Navier-Stokes則需要討論解的存在性及regularity等問題,這個部份由於時間的關係,尚未完全解決,故不納入論文中。
zh_TW
dc.description.abstractWe want to study this problem: Can we determine a rotating unknown obstacle D in an incompressible fluid which is filled with a bounded domain by the velocity
on the boundary of this domain? In fact, we only solve the partial problem. In dimension 3, we assume that a C2 bounded domain possess an axis paralleled with the zaxis and the domain is a circle at any horizontal plane. The unknown obstacle D rotates this axis with angular velocity $omega$ = (0, 0, 1)T . And in dimension 2, we assume that the domain is a circle, and this unknown obstacle rotates this center of this circle with angular velocity $omega$= (0, 0, 1)T . Then, we can identify the location and shape of the two unknown rotating obstacles by the velocity on the boundary of this domain.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:52:07Z (GMT). No. of bitstreams: 1
ntu-97-R94221011-1.pdf: 466954 bytes, checksum: a7712962419c09422fa32a81b18c5d58 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Existance of weak solutions . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The continuation property for our equation . . . . . . . . . . . . . . . 20
3 The Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
dc.language.isoen
dc.subject旋轉的zh_TW
dc.subject納維-斯托克斯方程zh_TW
dc.subject障礙物zh_TW
dc.subject反問題zh_TW
dc.subject不可壓縮流體zh_TW
dc.subjectincompressible fluiden
dc.subjectNavier-Stokes equationsen
dc.subjectrotatingen
dc.subjectobstacleen
dc.subjectinverse problemen
dc.title決定在不可壓縮流中的旋轉體zh_TW
dc.titleIdentification of a Rotating Obstacle in an
Incompressible Fluid
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林太家(Tai-Chia Lin),林景隆
dc.subject.keyword納維-斯托克斯方程,旋轉的,障礙物,反問題,不可壓縮流體,zh_TW
dc.subject.keywordNavier-Stokes equations,rotating,obstacle,inverse problem,incompressible fluid,en
dc.relation.page30
dc.rights.note有償授權
dc.date.accepted2008-06-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
456.01 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved