請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37915完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周子賓 | |
| dc.contributor.author | Yi-Lu Tian | en |
| dc.contributor.author | 田宜鷺 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:50:55Z | - |
| dc.date.available | 2009-07-30 | |
| dc.date.copyright | 2008-07-30 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-06-25 | |
| dc.identifier.citation | Ball L. J., Jarchaub T, Oschkinata H., Walterb U. (2002) EVH1 domains: structure, function and interactions. FEBS 513, 45-52
Bamburg JR. (1999). Proteins of the ADF/ cofilin family: essential regulators of actin dynamics. Annu. Rev. Cell Dev. Biol. 15,185–230 Baum B, Li W, Perrimon N. (2000). A cyclase-associated protein regulates actin and cell polarity during Drosophila oogenesis and in yeast. Curr Biol, 10, 964-973. Baum B, Perrimon N. (2001). Spatial control of the actin cytoskeleton in Drosophila epithelial cells. Nat. Cell Biol. 3, 883–90 Bessman M, Frick D, O’Handley S. (1996). The MutT proteins or 'Nudix' hydrolases, a family of versatile, widely distributed, 'housecleaning' enzymes. J. Biol. Chem. 27, 25059–25062 Bretscher, M.S. (1996). Expression and changing distribution of the human transferrin receptor in developing Drosophila oocytes and embryos. J. Cell Sci. 109, 3113–3119. Brendza,R.P., Serbus,L.R., Duffy,J.B., and Saxton,W.M. (2000). A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120-2122. Brendza, R. P., Serbus, L. R., Saxton, W. M. and Duffy, J. B. (2002). Posterior localization of dynein and dorsal-ventral axis formation depend on kinesin in Drosophila oocytes. Curr. Biol. 12, 1541 -1545 Breitwieser, W., Markussen, F. H., Horstmann, H. and Ephrussi, A. (1996). Oskar protein interaction with Vasa represents an essential step in polar granule assembly. Genes Dev. 10, 2179-2188. Bryan, J., Edwards, R., Matsudaira, P., Otto, J. and Wulfkuhle, J. (1993). Fascin, an echinoid actin-bundling protein, is a homolog of the Drosophila singed gene product. Proc. Natl Acad. Sci. USA 90, 9115-9119. Cant K, Knowles B, Mooseker M, Cooley L. (1994). Drosophila singed, a fascin homolog, is required for actin bundle formation during oogenesis and bristle extension. J. Cell Biol. 125, 369–380 Cha, B. J., Serbus, L. R., Koppetsch, B. S. and Theurkauf, W. E. (2002). Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nat. Cell Biol. 4, 592-598. Cha, B. J., Koppetsch, B. S., and Theurkauf, W. E. (2001). In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cell 106, 35–46. Chen,Y. and Schupbach,T. (2006). The role of brinker in eggshell patterning. Mech. Dev. Clark,I., Giniger,E., Ruohola-Baker,H., Jan,L.Y., and Jan,Y.N. (1994). Transient posterior localization of a kinesin fusion protein reflects anteroposterior polarity of the Drosophila oocyte. Curr. Biol. 4, 289-300. Clark, I., L.Y. Jan, and Y.N. Jan. (1997). Reciprocal localization of Nod and kinesin fusion proteins indicates microtubule polarity in the Drosophila oocyte, epithelium, neuron and muscle. Dev. 124, 461–470. Chen, C. H. NTU master thesis (2006) Analysis of Drosophila decapping protein 2, dDcp2, participating in axis determination during Drosophila oogenesis. Chou,T.B. and Perrimon,N. (1992). Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131, 643-653. Chou,T.B. and Perrimon,N. (1996). The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144, 1673-1679. Clark, A., Meignin, C., and Davis, I. (2007). A Dynein-dependent shortcut rapidly delivers axis determination transcripts into the Drosophila oocyte. Dev 134, 1955-1965 Cougot,N., Babajko,S., and Seraphin,B. (2004). Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell Biol. 165, 31-40. Cooley, L., Verheyen, E. and Ayers, K. (1992). chickadee encodes a profiling required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 69, 173-84. Danilchik, M. V. and Denegre, J. M. (1991). Deep cytoplasmic rearrangements during early development in Xenopus laevis. Dev. 111, 845-856. Dahlgaard, K., Alexandre A.S.F. Raposo, Niccoli, T., and Johnston D. S. (2007) Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte. Dev Cell 13, 539–553, Driever W: Maternal control of anterior development in the Drosophila embryo. In the development of Drosophila melanogaster, volume 1. Edited by Bate M, Martinez-Arias A. New York: Cold Spring Harbor Laboratory Press; 1993, 301-324. Duncan, J. E. and Warrior, R. (2002). The cytoplasmic dynein and kinesin motors have interdependent roles in patterning the Drosophila oocyte. Curr. Biol. 12, 1982 -1991 Dobens,L.L. and Raftery,L.A. (1998). Drosophila oogenesis: a model system to understand TGF-beta/Dpp directed cell morphogenesis. Ann. N. Y. Acad. Sci. 857, 245-247. Dobens,L.L., Peterson,J.S., Treisman,J., and Raftery,L.A. (2000). Drosophila bunched integrates opposing DPP and EGF signals to set the operculum boundary. Development 127, 745-754. Driever W, Nüsslein-Volhard C. (1988) A gradient of bicoid protein in Drosophila embryos. Cell.54, 83–93. Dunckley,T. and Parker,R. (1999). The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J. 18, 5411-5422. Ephrussi, A., Dickinson, L. K. & Lehmann, R. (1991) Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37–50. Ephrussi, A. & Lehmann, R. (1992) Induction of germ cell formation by oskar. Nature 358, 387–392. Fyrberg, E. A., Mahaffey, J. W., Bond, B. J. and Davidson, N. (1983). Transcripts of the six Drosophila actin genes accumulate in a stage- and tissue-specific manner. Cell 33, 115-123. Fillman,C. and Lykke-Andersen,J. (2005). RNA decapping inside and outside of processing bodies. Curr. Opin. Cell Biol. 17, 326-331. Friederich E, Pringault E, Arpin M, Louvard D.(1990). From the structure to the function of villin, an actin-binding protein of the brush border. BioEssays 12, 403–408 Gonzalez-Reyes A, Elliott H, St. Johnston D. (1995) Polarization of both major body axes in Drosophila by Gurken-Torpedo signaling. Nature.375, 654–658. Gavis, E. R. and Lehmann, R. (1992). Localization of nanos RNA controls embryonic polarity. Cell 71,301 -313 Gutzeit HO. 1986a. The role of microfilaments in cytoplasmic streaming in Drosophila follicles. J. Cell Sci. 80,159–69 Gutzeit, H. O. (1986a). The role of microfilaments in cytoplasmic streaming in Drosophila follicles. J. Cell Sci. 80, 159-169. Gutzeit HO. (1986b). The role of microtubules in the differentiation of ovarian follicles during vitellogenesis in Drosophila. Roux’s Arch. Dev. Biol. 195,173–81 Gutzeit, H. O. and Koppa, R. (1982). Time-lapse film analysis of cytoplasmic streaming during late oogenesis of Drosophila. J. Embryol. Exp. Morphol. 67,101 -111 Gutzeit, H. O. and Arendt, D. (1994). Blocked endocytotic uptake by the oocyte causes accumulation of vitellogenins in the haemolymph of the female-sterile mutants quitPX61 and stand stillPS34 of Drosophila. Cell Tissue Res. 275, 291-298. Guild,G.M., Connelly,P.S., Shaw,M.K., and Tilney,L.G. (1997). Actin filament cables in Drosophila nurse cells are composed of modules that slide passively past one another during dumping. J. Cell Biol. 138, 783-797. Hay, B., Jan, L. H. and Jan, Y. N. (1990). Localization of vasa, a component of Drosophila polar granules, in maternal-effect mutants that alter embryonic anteroposterior polarity. Dev 109, 425 -433. Hudson, A. M., and Cooley L., (2002). Understanding the function of actin-bing proteins through genetic analysis of Drosopila oogenesis. Annu. Rev. Genet. 36, 455–88 Hudson A. M, Cooley L. (2002). A subset of dynamic actin rearrangements in Drosophila requires the Arp2/3 complex. J. Cell Biol. 156, 677–87 Januschke, J., Gervais, L., Dass, S., Kaltschmidt, J. A., Lopez-Schier, H., St Johnston, D., Brand, A. H., Roth, S. and Guichet, A. (2002). Polar transport in the Drosophila oocyte requires Dynein and Kinesin I cooperation. Curr. Biol. 12, 1971 -1981 Kim-Ha, J., Smith, J. L. and Macdonald, P. M. (1991). oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66, 23-35 Koch, E. A., and Spitzer, R. H. (1983). Multiple effects of colchicine on oogenesis in Drosophila: induced sterility and switch of potential oocyte to nurse-cell developmental pathway. Cell Tissue Res. 228, 21–32. Koonin,E.V. (1993). A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses. Nucleic Acids Res. 21, 4847. Lasko, P. F. and Ashburner, M. (1990). Posterior localization of vasa protein correlates with, but is not sufficient for, pole cell development. Genes Dev. 4, 905-921.[ Lehmann, R. and Nüsslein-Volhard, C. (1986). Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila. Cell 47,141 -152. Lehmann,R. and Nusslein-Volhard,C. (1991). The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Dev 112, 679-691. Lin,M.D., Fan,S.J., Hsu,W.S., and Chou,T.B. (2006). Drosophila decapping protein 1, dDcp1, is a component of the oskar mRNP complex and directs its posterior localization in the oocyte. Dev. Cell 10, 601-613. Lin, M.D NTU Ph. D. thesis (2006). Developmental genetic analysis of Drosophila decapping protein 1, dDcp1. Mahajan-Miklos S, CooleyL. (1994). The villinlike protein encoded by the Drosophila quail gene is required for actin bundle assembly during oogenesis. Cell 78, 291–301 Machesky LM, Gould KL. (1999). The Arp2/3 complex: a multifunctional actin organizer. Curr. Opin. Cell. Biol. 11,117–21 Maciver SK. 1996. Myosin II function in non-muscle cells. BioEssays 18,179–182 Markussen, F.-H., Michon, A.-M., Breitwieser, W. and Ephrussi, A. (1995). Translational control of oskar generates Short OSK, the isoform that induces pole plasm assembly. Dev 121, 3723 -3732 Mahajan-Miklos,S. and Cooley,L. (1994). Intercellular cytoplasm transport during Drosophila oogenesis. Dev Biol 165, 336-351. MacDougall N, Clark A, MacDougall E, Davis I. (2003) Drosophila gurken (TGFalpha) mRNA localizes as particles that move within the oocyte in two dynein-dependent steps. Dev. Cell. 4, 307–319. Magie, C. R., Meyer, M. R., Gorsuch, M. S. & Parkhurst, S. M. (1999). Mutations in the Rho1 small GTPase disrupt morphogenesis and segmentation during early Drosophila development. Dev 126, 5353–5364. Manseau, L. J. and Schupbach, T. (1989) cappuccino and spire: two unique maternal-effect loci required forCboth the anteroposterior and dorsoventral patterns of the Drosophila embryo. Genes Dev. 3,1437–1452 Manseau, L., Calley, J. & Phan, H. (1996) Profilin is required for posterior patterning of the Drosophila oocyte. Development 122, 2109–2116. McGrail, M., and Hays, T. S. (1997). The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Dev 124, 2409–2419. Montell, D. J., Rorth, P. and Spradling, A. C. (1992). slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell 71, 51-62. Montell, D. J. (2003). Border-cell migration: the race is on. Nat. Rev. Mol. Cell Biol. 4, 13-24 Miki H, Sasaki T, Takai Y, Takenawa T (1998). Induction of filopodium formation by a WASP-related actin-depolymerizing protein NWASP. Nat, 391,93-96. Navarro, C., Puthalakath, H., Adams, J. M., Strasser, A., and Lehmann, R. (2004). Egalitarian binds dynein light chain to establish oocyte polarity and maintain oocyte fate. Nat. Cell Biol. 6, 427–435. Neuman-Silberberg, F. S. and Schüpbach, T. (1996). The Drosophila TGFalpha- like protein Gurken: expression and cellular localization during Drosophila oogenesis. Mech. Dev. 59, 105-113. Neuman-Silberberg FS, Schüpbach T. (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell.75, 165–174. Nilson, L.A., and Schu¨ pbach, T. (1999). EGF receptor signaling in Drosophila oogenesis. Curr. Top. Dev. Biol. 44, 203–243. Oda, H., Uemura, T., and Takeichi, M. (1997). Phenotypic analysis of null mutants for DE-cadherin and Armadillo in Drosophila ovaries reveals distinct aspects of their functions in cell adhesion and cytoskeletal organization. Genes Cells 2, 29–40. Paterson J, O’Hare K. (1991). Structure and transcription of the singed locus of Drosophila melanogaster. Genet. 129, 1073–1084 Perrimon, N. (1984). Clonal analysis of dominant female sterile, germline-dependent mutations in Drosophila melanogaster. Genet. 108, 927-939. Piccirillo C, Khanna R, Kiledjian M. (2003). Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA 9,1138–1147 Pokrywka, N. J., and Stephenson, E. C. (1991) Microtubules mediate the localization of bicoid RNA during Drosophila oogenesis. Dev 113, 55–66. Quinlan, M. E., Heuser J. E., Kerkhoff E., and Mullins, R. Dyche. (2005) Drosophila Spire is an actin nucleation factor. Nat. 433, 382-388 Rongo, C., Gavis, E. R. and Lehmann, R. (1995). Localization of oskar RNA regulates oskar translation and requires Oskar protein. Dev 121, 2737 -2746 Riparbelli M, Callaini C. (1995). Cytoskeleton of the Drosophila egg chamber: new observations on microfilament distribution during oocyte growth. Cell Motil. Cytoskelet. 31, 298–306 Riechmann,V. and Ephrussi,A. (2001). Axis formation during Drosophila oogenesis. Curr. Opin. Genet. Dev. 11, 374-383. Robinson D. N. and Cooley L. (1997). Genetic analysis of the actin cytoskeleton in the Drosophila ovary. Annu. Rev. Cell Dev. Biol.13, 147–70 Roth, S., (2003). The origin of dorsoventral polarity in Drosophila. Philos Trans R Soc Lond B Biol Sci.358, 1317-1329 Rosales-Nieves, A.E., Johndrow, J.E., Keller, L.C., Magie, C.R., Pinto- Santini, D.M., and Parkhurst, S.M. (2006). Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino. Nat. Cell Biol. 8, 367–376. Schüpbach, T. and Wieschaus, E. (1986). Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev. Biol. 113,443 -448 Sheth,U. and Parker,R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805-808. Spradling,A.C. (1993). Developmental genetics of oogenesis. In The Development of Drosophila melanogaster, M.Bate and Arias AM, eds. Cold Spring Harbor Laboratory Press), pp. 1-70. St Johnston,D., Beuchle,D., and Nusslein-Volhard,C. (1991). Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66, 51-63. Steinhauer J and Kalderon D. (2006) Microtubule polarity and axis formation in the Drosophila oocyte. Dev Dyn. 235, 1455-1468. Review Steiger,M., Carr-Schmid,A., Schwartz,D.C., Kiledjian,M., and Parker,R. (2003). Analysis of recombinant yeast decapping enzyme. RNA. 9, 231-238 Theurkauf,W. E., Smiley, S.,Wong, M. L. & Alberts, B. M. (1992) Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Dev 115, 923–936. Theurkauf, W. E., Alberts, B. M., Jan, Y. N., and Jongens, T. A. (1993). A central role for microtubules in the differentiation of Drosophila oocytes. Dev 118, 1169–1180. Theurkauf, W. E. (1994) Premature microtubule-dependent cytoplasmic streaming in cappuccino and spire mutant oocytes. Science 265, 2093–2096. Theurkauf, W. E., and Hazelrigg, T. I. (1998). In vivo analyses of cytoplasmic transport and cytoskeletal organization during Drosophila oogenesis: characterization of a multi-step anterior localization pathway. Dev. 125, 3655–3666. Theriot J, Mitchison T. (1993). The three faces of profilin. Cell 75, 835–838 Van Eeden, F. and St Johnston, D. (1999) The polarization of the anterior–posterior and dorsal–ventral axes during Drosophila oogenesis. Curr. Opin. Genet. Dev. 9, 396–404. Van Dijk,E., Cougot,N., Meyer,S., Babajko,S., Wahle,E., and Seraphin,B. (2002). Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J. 21, 6915-6924. Vale, R. D. (2003). The molecular motor toolbox for intracellular transport. Cell 112, 467 -480. Vanzo, N. F. and Ephrussi, A. (2002). Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila oocyte. Dev 129, 3705-3714. Verkhusha, V. V., Tsukita, S. and Oda, H. (1999). Actin dynamics in lamellipodia of migrating border cells in the Drosophila ovary revealed by a GFP-actin fusion protein. FEBS Lett. 445, 395-401. Verheyen, E. M. and Cooley, L. (1994). Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Dev 120, 717-728. Wang, C. and Lehmann, R. (1991). Nanos is the localized posterior determinant in Drosophila. Cell 66, 637 -648. Wu, M. L. NTU master thesis. (2006) The genomic analysis of Drosophila decapping protein 2, dDcp2. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37915 | - |
| dc.description.abstract | 根據實驗室先前的研究,已知果蠅去頭蓋蛋白質1 (Drosophila decapping protein 1, dDcp1)是osk訊息核醣核酸(osk mRNA)輸送複合體的成員,並且為osk訊息核醣核酸往卵母細胞後端運送的過程所需。加上根據對其他物種的研究,指出去頭蓋蛋白質1與去頭蓋蛋白質2會形成一去頭蓋完全酵素體,執行分解訊息核醣核酸的功能。因此,我們想繼續探討︰是否在果蠅個體中去頭蓋蛋白質2(Drosophila decapping protein 2,dDcp2)會同様伴隨去頭蓋蛋白質1,共同參與osk訊息核醣核酸複合體(osk mRNP complex)的成員,並且負責 osk往卵母細胞後端運送的過程。
果蠅去頭蓋蛋白質已知有兩種蛋白表現形,分別是去頭蓋蛋白質A(dDcp2-PA)與去頭蓋蛋白質B(dDcp2-PB)。根據去頭蓋蛋白質2在其他物種中的序列比對,有三個保守性區域分別是區塊A(Box A), 區塊B(Box B), 以及與執行去頭蓋功能相關區域( Nudix motif),在這兩種表現型中皆具有這三個保守性區域。為了研究果蠅去頭蓋蛋白質2在發育過程中所扮演的角色,我們建立了幾個果蠅去頭蓋蛋白質2基因轉殖突變株,並在完全缺失果蠅去頭蓋蛋白質2的背景下分析這些轉殖突變株的個別功能。此篇論文中,我們把重點放在去頭蓋酵素功能的研究上。根據其他研究指出,在Nudix motif中的兩個重要胺基酸的突變,即會造成果蠅去頭蓋酵素功能的重大缺陷。因此希望透過所建立的dDcp2E133/134A,這個在去頭蓋功能相關區域中含有兩個胺基酸突變的轉殖品系,與dDcp2de21,這個果蠅去頭蓋蛋白質2完全缺失的品系的比較,進一步了解去頭蓋酵素功能對於發育遺傳上的重要性。 osk訊息核醣核酸在卵母細胞後端的定位,決定胚胎腹部與極細胞(pole cell)的發育。所以,果蠅去頭蓋蛋白質1突變的胚胎,呈現一個典型的後端性狀--胚胎的腹部是完全缺失的;然而大多數果蠅去頭蓋蛋白質2突變的胚胎,卻呈現只有部分腹部體節缺失的特徵。進一步對果蠅去頭蓋蛋白質2突變的卵母細胞做觀察,除了Osk,Staufen 以及 Vasa同樣對於胚胎後端發育重要的蛋白,三種皆呈現一表現錯位的不正常型態,異於正常胚胎中會在後端呈現的新月狀。此外,果蠅去頭蓋蛋白質2突變的母體所下的蛋,頭部呼吸觸角(dorsal appendages)的發育是有缺陷的。這些突變的性狀類似於與纖維性肌動蛋白(F-actin)合成相關的三個基因-- chic、spire、capu突變的性狀。又加上在中晚期果蠅去頭蓋蛋白質2突變的卵母細胞中,很特別的,有不正常纖維性肌動蛋白累積與塊狀結構的情形。根據以上這些特徵,皆暗示果蠅去頭蓋蛋白質2扮演著與那三個與調控纖維性肌動蛋白合成相關基因相似的角色。 卵母細胞內細胞胞質的流動(ooplasmic streaming),是細胞胞器或囊泡透過驅動蛋白(Kinesin)在微管(microtubule)上運送所造成細胞質移動的現象。根據其他研究指出:Capu與Spire共同調控之路徑控制了卵母細胞中胞質前後時期不同流動狀態的轉換;在卵母細胞發育至第8期到第10A期時間中,透過Capu與Spire所合成的纖維性肌動蛋白網狀構造,會抑制動驅動蛋白的運動使得微管呈現極性梯度型態,細胞質在此時期的卵母細胞中是呈現些微抖動的現象;而在接下來的第10B期到第11期的時間,纖維性肌動蛋白網狀構造會瓦解,如此一來,驅動蛋白失去了約束力,在自由運動的狀況下使細胞質產生了流動,這種流動也因此順帶將微管沖刷成在細胞膜表面下的平行陣狀構造,此時,卵母細胞細胞質呈現快速流動現象。 在果蠅去頭蓋蛋白質2突變下,原本期望有一個卵母細胞胞質提早快速流動的突變性狀,因為這個性狀是chic、 spire 與 capu基因突變中皆具有的一個獨特特徵。但不如期望地,反而得到一個卵母細胞胞質停止快速流動的結果。為了探究原因,接著檢驗纖維性肌動蛋白網狀構造與驅動蛋白的行為,是否因果蠅去頭蓋蛋白質2突變被影響,進而導致卵母細胞胞質停止了快速流動。然而,纖維性肌動蛋白網狀構造一如正常個體中在恰當時序瓦解,不過驅動蛋白倒是受到影響呈現散開或是沒在後端出現的型態。因此,被抑制的卵母細胞胞質流動,可由被影響的驅動蛋白此證據,得到支持。 此外,在果蠅去頭蓋蛋白質2完全缺失的品系(dDcp2de21),以及在其背景下放入含有在果蠅去頭蓋蛋白質2中兩個對於酵素功能重要的胺基酸突變基因片段(dDcp2E133/134A)的果蠅中,都觀察到在卵母細胞中,不正常纖維性肌動蛋白塊狀結構以及細胞質停止流動的情形,所以我們假定這些現象與果蠅去頭蓋蛋白質2的酵素功能相關,而球狀肌動蛋白(G-actin)基因的訊息核醣核酸(mRNA),則被視為是要被果蠅去頭蓋蛋白質2分解的對象之ㄧ。在這個假設中,過量表現的球狀肌動蛋白造成卵母細胞胞質快速流動時期的停止現象。透過球狀肌動蛋白過量表現的果蠅品系的觀察以模擬假設的情況,得到許多結果與果蠅去頭蓋蛋白質2完全缺失的品系所呈現的突變性狀相似,其中一項即是卵母細胞胞質快速流動時期的停止,此項結果提供假設一個支持證據。 最後,基於卵母細胞胞質流動的停止,與纖維性肌動蛋白網狀結構的正常分解,我們提出了果蠅去頭蓋蛋白質2沒有參與Spir與Capu所調控的路徑的假論。而卵母細胞胞質流動的停止的現象似乎與肌動蛋白的過量表現相關,然而是否果蠅去頭蓋蛋白質2的突變會造成球狀肌動蛋白的過量表現,則需進一步研究以待證實。 | zh_TW |
| dc.description.abstract | Drosophila decapping protein 1, dDcp1, is reported to be a component of osk mRNP complex and directs its posterior localization in the oocyte. According to others’ report that Dcp1 and Dcp2 function together as a decapping holoenzyme, and we attempt to study whether Drosophila decapping protein 2, dDcp2, also involves in the osk mRNP complex and being required for its posterior transportation process.
There are two dDcp2 isoforms, dDcp2-PA and dDcp2-PB. Three evolutionally conserved domains—Box A, Box B, and Nudix motif are found in dDcp2 isoforms. To study the developmental role of dDcp2, we established several mutant transgenic lines and analyzed their functions in dDcp2del21 null background. It has been reported that two amino acids in the Nuidix fold being important for decapping activity mutations would abolish decapping enzymatic activity. To investigate the importance of decapping function we emphasized our study in dDcp2E133/134A transgenic line, which contains two amino acids mutations in the Nuidix fold and comparing with dDcp2de21. The localization of osk at the posterior of the oocyte is critical for both the development of abdomen and pole cells. Although GLC embryos of dDcp1 mutation display a typical posterior phenotype with abdominal deletion, most of the dDcp2 mutant GLC embryos present mild abdominal segmentation defect. In these dDcp2 mutant GLC oocytes, the posterior determinants-- Osk, Staufen and Vasa proteins display a mislocalized pattern comparing with a posterior crescent pattern in wild type oocytes. Besides, eggs laid by the dDcp2 mutant females display dorsal appendages defect. These mutant characteristics are similar to mutations of chic, spire and capu which regulate F-actin polymerization. In addition, an abnormal F-actin accumulation and clumps formed in mid and late stages of the dDcp2 mutant GLC oocytes. These findings suggest that dDcp2 may play a similar role with these actin regulators. Cytoplasmic streaming of the oocyte is named ooplasmic streaming. The flow is thought to be generated by kinesin-dependent transport of organelles or vesicles on microtubule. It is reported that the Capu/Spire pathway controls alternative states of the oocyte cytoplasm. During stages 8-10A, they assemble an actin mesh that suppresses KinesinⅠ motility to maintain a polarized microtubule cytoskeleton gradient and ooplasm is just seething in this time. During stages 10B-11, actin mesh disassembles, unrestrained KinesinⅠ movement generates flows that wash microtubules to parallel arrays below the surface forms fast ooplasmic streaming. At first, a premature fast ooplasmic streaming which is a distinct phenotype in chic, spire and capu mutations is expected in dDcp2 mutant. But unexpectedly, a halted ooplasmic fast streaming phenotype is found in dDcp2 mutant GLC oocytes. Next, actin mesh and KinesinⅠ behaviors were further examined if they are affected to inhibit ooplasmic streaming in dDcp2 mutation. However, actin mesh disassembles as wild-type schedule in the dDcp2 mutation. Nevertheless, KinesinⅠ displays a scattered or absent phenotype in the dDcp2 mutation. Hence, the blocked streaming phenotype is supported by the disrupted KinesinⅠ behavior. Moreover, since both dDcp2de21 and dDcp2E133/134A GLCs present abnormal actin clumps in the oocyte and halted ooplasmic streaming, it is proposed the halted fast ooplasmic streaming has correlation to the disrupted dDcp2 enzymatic activity and actin mRNA is therefore to be though as the substrate of dDcp2. To verify this hypothesis, ectopic actin expression lines thought to mimic overexpressed G-actin were used for observation and get several similar results to dDcp2 mutants, especially the halted fast ooplasmic streaming. Therefore, the part of overexpressed actin would cause halted fast ooplasmic streaming is supported. Finally, we propose that the dDcp2 may not involve in Spir/Capu pathway because a halted fast ooplasmic streaming and normal disassembled actin mesh structure. The halted fast ooplasmic streaming is related to the overexpressed actin but whether overexpressed actin is really the case in the dDcp2 mutants need future works for confirmation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:50:55Z (GMT). No. of bitstreams: 1 ntu-97-R94b43008-1.pdf: 4953043 bytes, checksum: 9a9e06ac925fc15ab1a65b9c6f8c7312 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………..i
致謝…………………………………………………………………………………. …ii 中文摘要……………………………………………………………………………. ...i ii Abstract……………………………………………………………………………. ….vi Introduction………………………………………………………………………………..1 1. Overview of Drosophila oogenesis……………………………………………………….1 2. Microtubule network and axis determination…………………………………………..3 3. Dorsal-ventral body axis determination during Drosophila oogenesis………………...7 4. Anterior- posterior body axis determination during Drosophila oogenesis…………..10 5. Actin cytoskeleton in maternal components transportation and patterning………...12 6. The coordination between actin and microtubules ……………………………………14 7. Regulation of oskar mRNA localization and protein expression ……………………..17 8. General mRNA degradation pathway………………………………………………….20 9. The degradation structure, Processing bodies…………………………………………21 10. Present studies on the decapping protein 1 ……………………………………………26 11. Present studies on the decapping protein 2…………………………………………… 28 12. Studies from the structural basis of Dcp2p /Dcp1p complex to gain insight into their interaction ……………………….. …………………………………………….....30 Results………………………………………………………………………………...32 Summary………………………………………………………………………………….........32 1. Genomic and proteomic analysis of dDcp2………………………………………………36 2. Molecular characterization of dDcp2 mutant alleles and genomic rescue……………..37 3. dDcp2 mutant GLC embryos display abdominal segmentation defects……………….44 4. dDcp2 mutant GLC eggs present dorsal appendages defect and dumpless phenotype…………………………………………………………………………………..47 5. Maternal determinant of dorsal-ventral (D-V) body axis is affected in dDcp2 mutants……………………………………………………………………………..49 6. Posterior determinants are affected in dDcp2 mutants…………………………………51 7. Aberrant actin structure in the dDcp2 mutants ………………………………………...57 8. Ooplasmic streaming of the oocyte is affected in dDcp2 mutants……………………...63 9. The distribution of kinesinⅠ is disrupted in dDcp2 mutants…………………………..67 10. Actin mesh disassembly is not affected in dDcp2 mutant oocytes ……………………70 11. nanos-Gal4-VP16 > GFP-actins display similar behavior to dDcp2 GLC mutants….72 12. Actin mRNA level does not raise in dDcp2 mutant GLC egg chambers……………..74 13. P-bodies are accumulated and enlarged in the dDcp2 mutant GLC nurse cells…….75 Discussion…………………………………………………………………………………...77 1. The lethality and mutant phenotypes of dDcp2de21 is specific to the disrupted dDcp2 locus………………………………………………………………………………..77 2. The role of dDcp2 plays in the osk mRNP complex……………………………………..79 3. Abnormal actin cytoskeleton in dDcp2 mutation………………………………………..82 4. Factors regulate ooplasmic streaming……………………………………………………96 5. Phenotypes of the dDcp2 mutant GLC embryos being germ-line specific is needed for further confirmation ………………………………………………………………...102 Material and Methods………………………………………………………………...105 Drosophila keeping and maintance………………………………………………………….105 Drosophila stocks…………………………………………………………………………… 105 Germ-line clone generation………………………………………………………………….106 Scheme..………………………………………………………………………………………107 Cuticle preparation…………………………………………………………………………..109 Whole-mount ovary antibody staining……………………………………………………...109 Visualization of the actin mesh………………………………………………………………110 Plasmid constructions for genomic rescue………………………………………………….111 Analysis of cytoplasmic movements…………………………………………………………112 Isolation of RNA and RT-PCR………………………………………………………………113 Isolation of RNA from 10 egg chambers…………………………………………………….113 RT-PCR…………………………………………………………………………………..…...114 References............................................................................................................................115 Tables and Figures…………………………………………………...………………..132 Figure 1. Overview of the Drosophila oogenesis …………………………………………….132 Figure 2. Microtubule reorganization and A/P axis establishment. ……………………..……133 Figure 3. Cytoplasmic streaming in the oocyte…………………….. ………………………..137 Figure 4. Cytoplasmic actin bundles required during ea106rly slow and late rapid phases of transport………………………………………………………….…………………137 Figure 5. Cortical actin reduction and microtubule rearrangem108ent during stage 10 egg chamber……………………………………………………………………………………138 Figure 6. General mRNA degradation pathway and basic components of Processing body…139 Figure 7. Alignment of Dcp2 proteins from different organisms ………….…………………141 Figure 8. Four predicted transcripts and CDS of dDcp2………………………………………142 Figure 9. Alignment of dDcp2-PA, dDcp2-PB, dDcp2-PC and dDcp2-PD coding sequence...143 Figure 10. A genomic map of dDcp2 and rescued genomic fragments………………….……146 Table 1. The impact of maternal dbo to the lethality of the dDcp2 mutant………………...…148 Table 2. Complementation analysis…………………………………………………………...149 Figure 11. dDcp2 mutant GLC embryos display abdominal segmentation defect……………150 Figure 12. dDcp2 mutant GLC eggs with dorsal appendages defect and dumping defect……152 Figure 13. dDcp2 mutant egg chambers display a dumpless phenotype…………………..…154 Figure 14. Gurken expression level is reduced in the dDcp2 mutant GLC egg chambers……156 Figure 15. Staufen protein posterior localization is affected in the dDcp2 mutant GLC egg.. chambers. …………………………………………………………………………..157 Figure 16. Osk protein posterior localization is affected in the dDcp2 mutant GLC egg chambers. …………………………………………………………………………...159 Figure 17. Vasa protein posterior localization is affected in the dDcp2 mutant GLC egg 133 chambers. ……………………………………………………………………..…….162 Figure 18. A comparison of posterior determinants behaviors with embryonic phenotypes in histogram …………………………………………………………………………...164 Figure 19. Actin structure in the wide-type egg chambers……………………………………166 Figure 20. Abnormal actin structure in the dDcp2de21 GLC egg chambers……………………168 Figure 21. Abnormal actin structures in the dDcp2E133/134A GLC egg chambers………………171 Figure 22. Actin does not detach from the plasma membrane of the oocyte in dDcp2de21 GLC egg chambers. ………………………………………………………………...174 Figure 23. Cytoplasmic actin bundle in the nurse cell is reduced in the dDcp2 mutant GLC Egg chambers. …………………………………………………….………………175 Figure 24. Abnormal mitosis in dDcp2 mutant GLC egg chambers……………….…………177 Figure 25. Slow ooplasmic streaming in stage 10A is affected in dDcp2 mutant GLC oocytes ………………………………………………………………………..……178 Figure 26. Fast ooplasmic streaming at stage 10B is affected in dDcp2 mutant GLC oocytes…………………………………………………………………………….180 Figure 27. Kinesin-lacZ distribution is disrupted in the dDcp2 mutant GLC …..……….……182 Figure 28. dDcp2 mutant GLC don’t impair actin mesh formation in the oocyte cytoplasm………………………………………………………………….……….183 Figure 29. Actin RNA level seems not affected in dDcp2mutant GLC……………………….186 Figure 30. P body is accumulated in dDcp2 mutants………………………………………….187 | |
| dc.language.iso | en | |
| dc.subject | 去頭蓋蛋白質2 | zh_TW |
| dc.subject | 卵母細胞內胞質流動 | zh_TW |
| dc.subject | ooplasmic streaming | en |
| dc.subject | decapping protein 2 | en |
| dc.title | 果蠅去頭蓋蛋白質2調控卵母細胞內胞質的流動 | zh_TW |
| dc.title | Drosophila decapping protein 2, dDcp2, regulates the cytoplasmic streaming of the oocyte | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 柯逢春,董桂書,蘇銘燦 | |
| dc.subject.keyword | 去頭蓋蛋白質2,卵母細胞內胞質流動, | zh_TW |
| dc.subject.keyword | decapping protein 2,ooplasmic streaming, | en |
| dc.relation.page | 187 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-06-26 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 4.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
