請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37874
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖中明(Chung-Min Liao) | |
dc.contributor.author | Tzu-Ling Lin | en |
dc.contributor.author | 林姿伶 | zh_TW |
dc.date.accessioned | 2021-06-13T15:48:34Z | - |
dc.date.available | 2010-07-03 | |
dc.date.copyright | 2008-07-03 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-06-27 | |
dc.identifier.citation | [Anon]. 2000. U.S. EPA proposes new arsenic standard arsenic for drinking water.
Civil Engineering 70: 27−27. Abedin MJ, Howells JC, Meharg AA. 2002a. Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contamination water. Plant and Soil 240: 311−319. Abedin MJ, Cresser MS, Feldmann J, Howells JC. 2002b. Arsenic accumulation and metabolism in rice (Oryza sativa L.) Environmental Science and Technology 36: 962−968. Agency for Toxic Substances and Disease Registry (ATSDR). 2000. Toxicological profile for arsenic (uptake). Atlanta, GA: U.S. Public Health Service. Ahsan HA, Perrin M, Parvez F, Stute M, Zheng Y, Milton AH, Brandt-Rauf P, van Geen A, Graziano J. 2000. Associations between drinking water and urinary arsenic levels and skin lesions in Bangladesh. Journal of Occuptational Environmental Medicine 42: 1195−1210. Alam M, Ratner D. 2001. Primary care: cutaneous squamous-cell carcinoma. New England Journal of Medicine 334: 975−983. Aposhian HV, Zakharyan RA, Avram MD, Sampayo-Reyes A, Wollen ML. 2004. A review of the enzymology of As metabolism and a new potential role of hydrogen peroxide in detoxication of the trivalent As species. Toxicology and Applied Pharmacology 198: 327−335. Arrighi HM, Hertz-Picciotto I. 1996. Controlling the healthy worker survivor effect: an example of arsenic exposure and respiratory cancer. Occupational and Environmental Medicine 53: 455−462. Bavinck JNB, Euvrard S, Naldi L, Nindl I, Proby CM, Neale R, Abeni D, Tessari GP,Feltkamp MCW, Claudy A, Stockfleth E, Harwood CA, and the EPI-HPV-UV-CA group. 2007. Keratotic skin lesions and other risk factors are associated with skin cancer in organic-transplant recipients: a case-control study in the Netherland, United Kingdom, Germany, France, and Italy. The Society for Investigative Dermatology 127: 1647−1656. Berg M, Tran HC, Nguyen TC, Pham MV, Schertenleib R, Giger W. 2001. Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environmental Science and Techology 35: 2621−2626. Bhattacharjee Y. 2007. Tooxicology − a sluggish response to humanity’s biggest mass poisoning. Science 315: 1659−1661. Biagini RE. 1974. Consideraciones actuales sobre hidroarsenicismo cronico regional endemico (H. A. C. R. E.). La Semana Medica 145: 2171−2179. Booth B. 2006. Controversy flares over rice research. Environmental Science and Technology 40: 2077−2078. Booth B. 2007. Arsenic in U.S. rice varies by region. Environmental Science and Technology 41: 2075−2076. Bradshaw CT, Witt FJ. 1971. Method for raditation risk assessment for SNAP systems. Health Physics 21: 45−45. Brown KG. 1998. Assessing risk of inorganic arsenic in drinking water in the United States. Human and Ecological Risk Assessment 4: 1061−1070. Chan PC, Huff J. 1997. Arsenic carcinogenesis in animals and humans: mechanistic, experimental, and epidemiological evidence. Journal of Environmental Science and Health C15: 83−122. Chatterjee A, Das D, Mandal BK, Chowdhury TR, Samanta G, Chakraborti D. 1995. Arsenic in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world, Part I. Arsenic species drinking water and urine of the affected people. The Analyst 120: 643−650. Chen CJ, Chen CL, Hsu LY, Chou WL, Lin YC, Tseng MP, Chiou HY, Hsueh YM. 2001. Biological gradient between long-term arsenic exposure and cancer in Taiwan. Toxicology 164: 17−18. Chen CJ, Hsu LI, Wang CH, Shih WL, Hsu YH, Tseng MP, Lin YC, Chou WL, Chen CY, Lee CY, Wang LH, Cheng YC, Chen CL, Chen SY, Wang YH, Hsueh YM, Chiou HY, Wu MM. 2005. Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan. Toxicology and Applied Pharmacology 206: 198−206. Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D. 2000. Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environmental Health Perspectives 108: 393−397. Chowdhury UK, Rahman MM, Sengupta MK, Lodh D, Chanda CR, Roy S, Quamruzzaman Q, Tokunaga H, Ando M, Chakraborti D. Pattern of excretion of arsenic compounds [arsenite, arsenate, MMA(V), DMA(V)] in urine of children compared to adults from an arsenic exposed area in Bangladesh. 2003. Journal of Environmental Science and Health A38: 87−113. Christen K. 1999. Arsenic standard for drinking water too high, NRC says. Environmental Science and Technology 33: 188A−188A. Christensen ER, Nyholm N. 1984. Ecotoxicological assays with algae-Weibull dose-response curves. Environmental Science and Technology 18: 713−718. Clewell HJ, Tomas RS, Gentry PR, Crump KS, Kenyon EM, El-Masri HA, Yager JW. 2007. Researsh toward the developmwnt of a biologically based dose response assessment for inorganic arsenic carcinogenisity: a progress report. Toxicology and Applied Pharmacology 222: 388−398.Committee on carcinogenicity of chemicals in food, consumer products and the environment (COC). 2004. Guidance on a strategy for the risk assessment of chemical carcinogens. The Stationary Office, London. Corley RA, Gordon SM, Wallace LA. 2000. Physiologically based pharmacokinetic modeling of the temperature-dependent dermal absorption of chloroform by humans following bath water exposures. Toxicological Sciences 53: 13−23. Dhar RK, Biswas BK, Samanta G, Mandal BK, Chowdhury RT, Chanda CR, Basu G, Chakraborti D, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D. 1998. Groundwater arsenic contamination and sufferings of people in Bangladesh may be the biggest arsenic calamity in the world. In: proceedings of the international conference on arsenic pollution of groundwater in Bangladesh: cases, effects and remedies, Dhaka, Bangladesh Dhaka, India: Dhaka Community Hospital pp, 86−87. Dougherty CP, Holtz SH, Reinert JC, Panyacosit L, Axelrad DA, Woodruff TJ. 2000. Dietary exposure to food contaminants across the United States. Environmental Research Section A84: 170−185. Foy HM, Tarmapai S, Eamchan P, Metdilogkul O. 1992. Chronic arsenic poisoning from well water in a mining area in Thailand. Asia-Pacific Journal of Public Health 6: 150−152. Gamble MV, Liu X, Ahsan H, Pilsner JR, Illievski V, Slavkovich V, Parvez F, Levy D, Factor-Litvak P, Graziano JH. 2005. Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh. Environmental Health Perspectives 113: 1683−1688. Gebel TW. 2001. Unanswered questions in arsenic toxicology. Journal of Environmental Pathology, Toxicology and Oncology 20: 299−309. Gong Z, Lu X, Cullen WR, Le XC. 2001. Unstable trivalent arsenic metabolites,monomethylarsonous acid and dimethylarsinous acid. Journal of Analytical Atomic Spectrometry 16: 1409−1413. Guha Mazumder DN, Das Gupta J, Santra A, Pal A, Ghose A, Sarkar S, Chattopadhaya N, Chakraborti D. 1997. Non-cancer effects of chronic arsenicosis with special reference to liver damage. In arsenic exposure and health effects (Abernathy CO, Calderon RL, Chappell WR, eds). London: Chapman and Hall pp, 112−123. Guha Mazumder DN, Haque R, Ghosh N, De BK, Santra A, Chakraborty D, Smith AH. 1998. Arsenic levels in drinking water and the prevalence of skin leions in West Bengal, India. International Journal of Epidemiology 27: 871−877. Guha Mazumder DN. 2007a. Effects of drinking water arsenic contaminated water in children. India Pediatrics 44: 925−927. Guhu Mazumder DN. 2007b. Arsenic and non-malignant lung disease. Journal of Environmental Science and Health A42: 1859−1867. Haddad S, Restieri C, Krishnan K. 2001. Characterization of age-related changes in body weights and organ weights from birth to adolescence in humans. Journal of Toxicology Environmental Health A64: 453−464. Haggard HW. 1924a. The absorption, distribution, and elimination of ethyl ether. II. Analysis of the mechanism of the absorption and elimination of such a gas or vapor as ethyl ether. Journal of Biological Chemistry 59: 753−770. Haggard HW. 1924b. The absorption, distribution, and elimination of ethyl ether. II. The relation of the concentration of ether, or any similar volatile substance, in the central nervous system to the concentration in the arterial blood, and the buffer action of the body. Journal of Biological Chemistry 59: 771−781. Haque R, Guha Mazumder DN, Samanta S, Ghosh N, Kalman D, Smith MM, Mitra S, Santra A, Lahiri S, Das S, De BK, Smith AH. 2003. Arsenic in drinking water and skin lesions: dose-response data from West Bengal, India. Epidemiology 14: 174−182. Hissink AM, Wormhoudt LW, Sherratt PJ, Hayes JD, Commandeur JNM, Vermeulen NPE, van Bladeren PJ. 2000. A physiologically-based pharmacokinetic (PB-PK) model for ethylene dibromide: relevance of extrahepatic metabolism. Food and Chemical Toxicology 38: 707−716. Holcomb WL, Chaiworapongsa T, Luke DA, Burgdorf KD. 2001. An odds measure of risk: use and misuse of the odds rario. The American College of Obstetricians and Gynecologists 98: 685−688. Imaizumi Y. 1996. Longitudinal analysis of mortality from breast cancer in Japan, 1950−1993: fitting Gompertz and Weibull functions. Mechanisms of Aging and Development 88: 169−183. International Agency for Research on Cancer (IARC). 1980. Monographs on the evaluation of the carcinogenic risk of chemical to humans: some metal and metallic compounds. International Agency for Research on Cancer. Lyon. International Agency for Research on Cancer (IARC). 1987. Evaluation of carcinogenic risks to humans. International Agency for Research on Cancer. Supplement 7: 100−106. International Agency for Research on Cancer (IARC). 2004. Some drinking water disinfectants and contaminants, including arsenic. vol. 84. Lyon: International Agency for Research on Cancer. Jha AN, Noditi M, Nilson R, Natarajan AT. 1992. Genotoxic effects of sodium arsenite on human cells. Mutation Research 284: 215−221. Juhasz A, Smith E, Weber J, Rees M, Rofe A, Kuchel T, Sansom L, Naidu R. 2006. In vivo assessment of arsenic bioavailability in rice and its significance for human risk assessment. Environmental Health Perspectives 114: 1826−1831.Kitchin KT. 2001. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicology and Applied Pharmacology 172: 249−261. Kodell RL, Chen JJ, Delongchamp RR, Young JF. 2006. Hierarchical models for probabilistic dose-response assessment. Regulator Toxicoligy and Pharmacology 45: 265−272. Laparra JM, Velez D, Barbera R, Farre R, Montoro R. 2005. Bioavailability of inorganic arsenic in cooked rice: Practical aspects for human health risk assessment. Journal of Agricultural and Food Chemistry 53: 8829−8833. Lerman SA, Clarkson TW, Gerson RJ. 1983. Arsenic uptake and metabolism by liver cells in dependent on arsenic oxidation state. Chemistry and Biology 45: 401−406. Linberg AL, Goessler W, Grander M, Nermell B, Vahter M. 2007. Evaluation of the three most commonly used analytical methods for determination of inorganic arsenic and its metabolites in urine. Toxicology Letters 168: 310−318. Mandal BK, Chowdhury TR, Samanta G, Basu GK, Chowdhury PP, Chanda CR, Lodh D, Karan NK, Dhar RK, Tamili DK, Das D, Saha KC, Chakraborti D. 1996. Arsenic in groundwater in seven districts of West Bengal, India - the biggest arsenic calamity in the world. Current Science 70: 976−986. Mann S, Droz PO, Vahter M. 1996a. A physiologically based pharmacokinetic model for arsenic exposure. I. Development in hamsters and rabbits. Toxicology and Applied Pharmacology 137: 8−22. Mann S, Droz PO, Vahter M. 1996b. A physiologically based pharmacokinetic model for arsenic exposure. II. Validation and application in humans. Toxicology and Applied Pharmacology 140: 471−486. McCarty KM, Houseman EA, Quamruzzman Q, Rahman M, Mahiuddin G, Smith T,Ryan L, Christiani DC. 2006. The impact of diet and betel nut use on skin lesions associated with drinking-water arsenic in Pabna, Bangladesh. Environmental Health Perspectives 114: 334−340. McCarty KM, Chen YC, Quamruzzaman Q, Rahman M, Mahiuddin G, Hsueh YM, 2007. Arsenic methylation, GSTT1, GSTM1, GSTP1 polymorphisms, and skin lesions. Environmental Health Perspectives 115: 341−345. McDonald C, Hoque R, Huda N, Cherry N. 2006. Prevalence of arsenic-related skin lesions in 53 Widely-scattered villages of Bangladesh: an ecological survey. Journal of Heatlh Population Nutrition 24: 228−235. Michaelis L, Menten M. 1913. Die kinetic der invertinwirkung. Biochemische Zeitschrift 49: 333−369. Morales KH, Ryan L, Kuo TL, Wu MM, Chen CJ. 2000. Risk of internal cancers from arsenic in drinking water. Environmental Health Perspectives 108: 655−661. Mushak P, Crocetti AF. 1995. Risk and revisionism in arsenic cancer risk assessment. Environmental Health Perspectives 103: 684−689. National Research Council (NRC). 1983. Risk assessment in the Federal Government: Managing the Process. NAS press, Washington, DC. National Research Council (NRC). 1999. Arsenic in drinking water. National Academy of Sciences, Washington, DC. National Research Council (NRC). 2001a. Arsenic in drinking water. Washington, DC: National Academy Press. National Research Council (NRC). 2001b. Arsenic in drinking water: uptake. Washington, DC: National Academy Press. Park CN, Snee RD. 1983. Quantitative risk assessment: state-of-the-art for carcinogenesis. Fundamental and Applied Toxicology 3: 320−333. Pearce F. 1998. Arsenic in the water. The Guardian (UK). 19/25 February pp, 2−3.Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Aposhian HV. 2000. Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicology and Applied Pharmacology 163: 203−207. Price K, Haddad S, Krishnan K. 2003. Physiological modeling of age-specific changes in the pharmacokinetics of organic chemicals in children. Journal of Toxicology Environmental Health A66: 417−433. Radabaugh TR, Aposhian HV. 2000. Enzymatic reduction of arsenic compounds in mammalian systems: Reduction of arsenate to arsenite by human liver arsenate reductase. Chemical Research in Toxicology 13: 26−30. Rahman M, Vahter M, Sohel N, Yunus M, Wahed MA, Streatifeld PK, Ekstrom EC, Persson LA. 2006a. Arsenic exposure and age- and sex-specific risk for skin lesions: A population-based case-referent study in Bangladesh. Environmental Health Perspectives 114: 1847−1852. Rahman M, Vahter M, Wahed MA, Sohel N, Yunus M, Strestfield PK, Arifeen SE, Bhuiya A, Zaman K, Chowhury AMR, Ekstrom EC, Persson LA. 2006b. Prevalence of arsenic exposure and skin lesions. A population based survey in Matlab, Bangladesh. Journal of Epidemiology and Community Health 60: 242−248. Ramsey JC, Andersen ME. 1984. A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicology and Applied Pharmacology 73: 159−175. Reddy MB, Yang RSH, Clewell III, HJ, Andersen ME. 2005. Physiologically Based Pharmacokinetics: Science and Applications. John Wiley & Sons. Inc., Hoboken, New Jersey. Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J, Lopez P, Garcia-Vargas G, del Carmen Caamano M, Cebrian ME, Stoltzfus RJ. 2007. Arsenic exposure and cognitive performance in Mexican schoolchildren. Environmental Health Perspectives 115: 1371−1375. Saad A, Hassanien MA. 2001. Assessment of arsenic level in the hair of the nonoccupational Egyptian population: Pilot study. Environment International 27: 471−478. Schechtman E. 2002. Odds ratio, relative risk, absolute risk reduction, and the number needed to treat−which of these should we use? Value in Health 5: 431−436. Sengupta MK, Hossain MA, Mukherjee A, Ahamed S, Das B, Nayak B, Pal A, Chakraborti D. 2006. Arsenic burden of cooked rice: traditional and modern methods. Food and Chemical Toxicology l44: 1823−1829. Smith AH, Lingas EO, Rahman M. 2000. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of The World Health Organization 78: 1093−1103. Smith AH, Lopipero PA, Bates MN, Steinmaus CM. 2002. Arsenic epidemiology and drinking water standards. Science 296: 2145−2146. Smith AH, Sharp DS. 1985. A standardized benchmark approach to the use of cancer epidemiology data for risk assessment. Toxicology Industrial Health 1: 205−212. Smith AH, Smith MMH. 2004. Arsenic drinking water regulations in developing countries with extensive exposure. Toxicology 198: 39−44. Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ. 2000. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Archives of Toxicology 84: 289−299. Sun G, Xu Y, Li X, Jin Y, Li B, Sun X. 2007. Urinary arsenic and metabolites in children and adults exposed to arsenic in drinking water in inner Mongolia, China. Environmental Health Perspectives 115: 648−652 Suzuki KT. 2005. Metabolomics of arsenic based on speciation studies. Analytica Chimica Acta 540: 71−76. Tchounwou PB, Centeno JA, Patlolla AK. 2004. Arsenic toxicity, mutagenesis, and carcinogenesis – a health risk assessment and management approach. Molecular and Cellular Biochemistry 225: 47–55. ten Berge WF. 1999. Kaplan-Meier tumor probability as a starting point for dose-response modeling provides accurate lifetime risk estimates from rodent carcinogenicity studies. Uncertainty In Risk Assessment of Environmental and Occupational Hazards 895: 112−124. Teorell T. 1937a. Kinetics of distribution of substances administered to the body. I. The extravascular modes of administration. Archives Internationles de Pharmacodynamie et de Therapie 57: 205−225. Teorell T. 1937b. Kinetics of distribution of substances administered to the body. I. The intravascular modes of administration. Archives Internationles de Pharmacodynamie et de Therapie 57: 226−240. Tseng WP, Chu HM, How SW, Fong JM, Lin CS, Yeh S. 1968. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. Journal of the National Cancer Institute 40: 453−463. Tseng WP. 1977. Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic. Environmental Health Perspectives 19: 109−119. United States Environmental Protection Agency (USEPA). 1976. Interim procedures and guidelines for health risk and 23 economic impact assessments of suspected carcinogens. Federal Register 4l: 21402-21405. United States Environmental Protection Agency (USEPA). 1989. Guidance manual for assessing human health risks from chemically contaminated, fish and shellfish. United States Evironmental Protection Agency. Washington DC.United States Environmental Protection Agency (USEPA). 1998a. Guidelines for ecological risk assessment. United States Environmental Protection Agency. Washington DC. EPA−630−R−95−002F. United States Environmental Protection Agency (USEPA). 1998b. Arsenic, inorganic. Washington DC. Integrated Risk Information Systems; CASRN 7440-38-2. Vahter M, Marafante E. 1985. Reduction and binding of arsenate in marmoset monkeys. Archives of Toxicology 57: 119−124. Vahter M. 2002. Mechanism of arsenic biotransformation. Toxicology 181−182: 211−217. Valenzuela OL, Borja-Aburto VH, Garcia-Vargas GG, Cruz-Gonzalez MB, Garcia-Montalvo EA, Calderon-Aranda ES Del Razo LM. 2005. Urinary trivalent methylated arsenic species in a population chronically exposed to inorganic arsenic. Environmental Health Perspectives 113: 250−254. Vose D. 2000. Risk analysis: a quantitative guide, 2nd Ed. John Wiley & Sons Ltd, Chicester, England. Weibull W. 1951. A statistical distribution function of wide applicability. Journal of Applied Mechanics 18: 293−297. Westergren A, Karlsson S, Andersson P, Ohlaaon O, Hallberg IR. 2001. Eating difficulties, need for assisted eating, nutritional status and pressure ulcers in pantients admitted for stroke rehabilitation. Journal of Clinical Nursing 10: 257−269. Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA. 2005. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environment Science and Technology 39: 5531−5540. Williams PN, Raab A, Feldmann J, Meharg AA. 2007. Market basket survey shows elevated levels of As in south central U.S. processed rice compared to California:consequences for human dietary exposure. Environmental Science and Technology 41: 2178−2183. Wong DL. 2001. Whaley & Wong’s Essentials of Pediatric Nursing (6th ed.). St. Louis: Mosby. World Health Organization (WHO). 1980. IARC monographs on the evaluation of the carcinogenic risk of chemical to humans: some metal and metallic compounds. World Health Organization (WHO). 1984. Guideline for drinking water quality. Geneva, Switzerland: World Health Organization. World Health Organization (WHO). 1993. WHO guidelines for drinking water quality. Vol. Geneva, Switzerland: World Health Organization. Yeh S. 1963. Relative incidence of skin cancer in Chinese in Taiwan: with special reference to arsenical cancer. National Cancer Institute Monograph 10: 81−107. Yu D, Kim JK. 2004. A physiologically based assessment of human exposure to radon released from groundwater. Chemosphere 54: 639−645. Yu D. 1998. Uncertainties in a pharmacokinetic modeling for inorganic arsenic. Journal of Environmental Science and Health A33: 1369−1390. Yu D. 1999. A pharmacokinetic modeling of inorganic arsenic: a short-term oral exposure model for humans. Chemosphere 39: 2737−2747. Yu WH, Harvey CM, Harvey CF. 2003. Arsenic in groundwater in Bangladesh: a geostatistical and epidemiological framework for evaluating health effects and potential remedies. Water Resources Research 39: 1−17. Zaidivar R. 1974. Arsenic contamination of drinking water and foodstuffs causing endemic chronic poisoning. Beitrage Zur Pathologie 151: 384−400. 邱弘毅,薛玉梅,許益祥,黃偉益,陳相志,朱子賢,魏敏澧,許鈴宜,謝芳宜, 陳吳銓,陳建仁。1996。無機砷與內臟癌相關之流行病學研究。中華民國公 共衛生雜誌。15: 92−108。邱弘毅。1996。台灣西南沿海烏腳病盛行地區及蘭陽盆地居民無機砷之代謝能力 與健康危害之流行病學研究。台灣大學博士論文。 許惠悰。2003。風險評估與風險管理。新文京開發出版股份有限公司。 陳建仁。1999。流行病學:原理與方法。聯經出版事業股份有限公司。 黃玉琪。2000。簡明解剖生理學 (三版)。麥麗敏,祁業榮,廖美華,鍾麗琴, 戴瑄,黃玉琪合著。匯華圖書出版有限公司。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37874 | - |
dc.description.abstract | 本研究主要目的為預測及評估孩童因暴露於含砷飲用水而誘導皮膚損害之
風險,並探討18 歲以下孩童各年齡層之飲用水安全含砷量。皮膚損害之色素沉 著症 (Hyperpigmentation) 及角化症 (Keratosis) 與慢性砷暴露有著密不可分之 關係。本研究以印度西孟加拉 (West Bengal, India) 砷流行疫區之流行病學調查 資料為基礎,利用韋伯 (Weibull) 模式建立砷暴露劑量、年齡及孩童皮膚損害效 應之關係,評估孩童飲用水安全含砷量,再結合以生理為基礎之藥理動力學 (Physiologically Based Pharmacokinetic, PBPK) 模式模擬孩童不同生理狀況及代 謝機制,以探討飲水量變異所造成體內濃度之變化。生命階段之PBPK 模式描述 孩童對主要代謝物種砷As(III)、As(V)、MMA(III)、MMA(V)、DMA(III) 及DMA(V) 之吸收、分佈、代謝及排除,並評估孩童體內各器官物種砷濃度之動態變化。本 研究利用勝算比 (Odds Ratio, OR) 推估孩童暴露於砷所造成皮膚損害之不利健 康效應之相對危險性大小,主要利用PBPK 模式模擬暴露組及控制組孩童尿液中 MMA(III) 之濃度,結合韋伯模式模擬不同年齡及不同砷濃度之盛行率,計算暴 露組及控制組累積盛行率之比值。結果顯示,砷暴露濃度與皮膚損害之累積盛行 率呈正相關 (R2=0.91−0.96),因男性皮膚損害最為嚴重,故以男性皮膚損害為基 準,並設其最高可接受風險為10-3,可得0−6 歲男性及女性之飲用水安全含砷量 分別為2.2 及6 μg/L,而7−18 歲男性及女性則分別為1 及2.8 μg/L。本研究以勝 算比 (95%信賴區間) 評估印度西孟加拉、孟加拉以及台灣西南部之平均飲用水 砷濃度分別為283.19、282.65 及468.61 μg/L 時,18 歲以下孩童之OR 分別為 1.38−5.20、2.03−20.97 及3.50−21.10。本研究建議尿液MMA(III) 濃度之增加與 砷誘導孩童皮膚損害風險之增加有關。本論文提供環境風險管理之架構並整合流 行病學做為政府訂定規範之建議。 | zh_TW |
dc.description.abstract | The purpose of this study was to predict and assess the arsenic-related children skin lesions risk from drinking water and estimate the safe drinking water arsenic standard below 18 years old children. Chronic arsenic exposure and skin lesions (such as hyperpigmentation and keratosis) are inextricably linked. We established the relationship among arsenic exposure dose, age and effects of children skin lesions with Weibull model based on arsenic epidemiological data in West Bengal, India. We assessed the safe drinking water arsenic standard for children with Weibull model and linked Physiologically Based Pharmacokinetic (PBPK) model to estimate children organ-specific arsenic concentrations varied with methylating activity and drinking water consumption rates. This study present an integrated approach by using Weibull model-based framework on the basis of gender/age-specific epidemiological data on arsenic exposure, skin lesions prevalence, and using PBPK model to predict monomethylarsonous acid (MMA(III)) levels in urine to estimate the likelihood risk obtained from studies conducted in arseiasis-endemic in West Bengal, India. A life-stage PBPK model is used to describe the absorption, distribution, metabolism, and excretion of the metabolites: arsenate (As(V)), arsenite (As(III)), monomethylarsonic acid (MMA(V)), monomethylarsonous acid (MMA(III)), dimethylarsinic acid (DMA(V)), and dimethylarsinous acid (DMA(III)) in target tissue groups, considering the potential impact by physiologically life-stage differences. We calculated odds ratio (OR) to assess the relative magnitude of the effect of the arsenic exposure on the likelihood of the prevalence of children skin lesions. The results show that arsenic exposure dose, age and cumulative prevalence ratio of the hyperpigmentation and keratosis are correlated significantly (R2=0.91-0.96). On the other hands, arsenic exposure dose raised followed cumulative prevalence ratio. The safe arsenic drinking water standards were estimated to be 2.2, 6 respectively for 0-6 years males and females as well as 1, and 2.8 μg/L respectively for 7-18 years males and females based on the index skin lesions of male hyperpigmentation with cumulative prevalence ratio equals 10-3. Risk predictions indicate that estimated ORs have 95% confidence intervals of 1.83−5.20, 2.03−20.97,
and 3.50−21.10 based on mean drinking water arsenic concentrations of 283.65, 282.65, and 468.81 μg/L, respectively, in West Bengal, Bangladesh, and southwestern Taiwan. Our finding also suggests that increasing urinary MMA(III) levels are associated with an increase in risks of arsenic-induced children skin lesions. This study offers an environmental risk management framework to suggest regulations and administrating process by linking arsenic epidemiological data. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:48:34Z (GMT). No. of bitstreams: 1 ntu-97-R95622018-1.pdf: 1420380 bytes, checksum: c9e402dee9de44815c681343068d3a90 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 中文摘要 I
英文摘要 II 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XI 壹、前言 1 貮、動機與目的 3 2.1 研究動機 3 2.2 研究目的 4 參、文獻回顧 5 3.1 砷的代謝與毒性 5 3.1.1 砷的物化性質 5 3.1.2 砷的代謝 7 3.1.3 砷的毒性 10 3.2 含砷飲用水之流行病學資料 11 3.2.1 印度西孟加拉含砷飲用水之流行病學調查 11 3.2.2 孟加拉含砷飲用水之流行病學調查 12 3.2.3 台灣含砷飲用水之流行病學調查 13 3.3 以生理為基礎之藥理動力學模式 15 3.3.1 生理為基礎之藥理動力學之概念 15 3.3.2 砷暴露之生理為基礎之藥理動力學模式 18 3.4 劑量反應模式 20 3.4.1 常用劑量反應模式類型 20 3.4.2 韋伯分佈模式 21 3.5 風險評估 25 3.5.1 風險評估之架構 25 3.5.2 風險特性化之勝算比 28 3.5.3 風險分析之變異性與不確定性 29 肆、材料與方法 31 4.1 研究架構及地區 31 4.2 研究區域流行病學資料分析 33 4.2.1 印度西孟加拉砷流行疫區砷危害之研究 33 4.2.2 砷暴露健康指標分析 33 4.3 孩童之生理為基礎之藥理動力學模式 35 4.3.1 動力學基本公式 35 4.3.2 生理為基礎之藥理動力學模式之建立 36 4.3.3 考量生命階段生理為基礎之藥理動力學模式 51 4.4 韋伯劑量反應模式 53 4.5 勝算比 55 4.6 不確定分析 56 伍、結果 58 5.1 韋伯模式之擬合 58 5.2 孩童器官之砷濃度動態 63 5.2.1 孩童長期暴露之體內砷濃度與時間關係 63 5.2.2 飲水量變異分析 70 5.2.3 生理階段變異分析 70 5.3 韋伯模式為基礎之飲用水安全含砷量 75 5.4 孩童皮膚損害之風險 77 陸、討論 80 6.1 皮膚損害之韋伯-生理為基礎之藥理動力學模式 80 6.2 孩童皮膚損害之砷安全指標 85 6.3 應用 88 柒、結論 89 捌、未來研究建議 92 參考文獻 94 附錄A:PBPK模式各區塊中砷之吸收、排除與代謝方程式 108 附錄B:皮膚損害人數與盛行率 113 | |
dc.language.iso | zh-TW | |
dc.title | 攝取砷流行疫區飲用水所引起孩童砷相關皮膚損害之風險評估 | zh_TW |
dc.title | Assessing arsenic-related skin lesions risk in children from drinking water consumption in arseniasis-endemic areas | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳柏青(Bo-Ching Chen),蔡正偉(Jeng-Wei Tsai),凌明沛(Min-Pei Ling),陳詩潔(Szu-Chieh Chen) | |
dc.subject.keyword | 砷暴露,孩童,皮膚損害,甲基化,韋伯模式,藥理動力學,風險評估,印度西孟加拉, | zh_TW |
dc.subject.keyword | Arsenic Exposure,Children,Skin lesions,Methylation Capacity,Weibull,PBPK,Risk assessment,West Bengal (India), | en |
dc.relation.page | 116 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-06-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。