Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37873
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王自存(Tsu-Tsuen Wang)
dc.contributor.authorTzu-Yin Yangen
dc.contributor.author楊子瑩zh_TW
dc.date.accessioned2021-06-13T15:48:31Z-
dc.date.available2011-12-09
dc.date.copyright2011-12-09
dc.date.issued2011
dc.date.submitted2011-08-10
dc.identifier.citation田育天、陈善娜、郑焕娣、周恒苍及杨明挚. 2004. 香莢蘭花芽分化至萌發期內源激素的變化. 雲南植物研究. 26: 213-220.
李茂榮, 陳崇宇及李祖光. 2005. 固相微萃取技術於微量分析之應用. 化學. 63: 329-342.
杜郁芬. 2008. ‘巨峰’葡萄果皮中對二苯代乙烯類化合物之萃取、分離與檢測之研究, 國立台灣大學園藝學研究所碩士論文, 台北.
郭瀚文. 2004. 以氣相及液相層析質譜儀分析具荷爾蒙效應物質之方法開發, 國立中央大學化學系碩士論文, 桃園.
陳開憲、周繼中及吳香霖. 2007. 同步離子配對萃取及即時線上衍生氣相層析質譜技術應用於茭白內生吲哚乙酸之分析. 台灣園藝. 53: 419-426.
陳蓓君. 2010. 化學衍生在氣相層析質譜分析上的應用, 輔英科技大學醫事技術系碩士論文, 高雄.
Addicott, F., H. Carns, J. Cornforth, J. Lyon, B. Milborrow, K. Ohkuma, G. Ryback, O. Smith, W. Thiessen, and P. Wareing. 1968. Abscisic acid: a proposal for the redesignation of abscisin II (dormin), p. 1527-1529. In: F. Wightman and G. Setterfield (eds.). Biochemistry and Physiology of Plant Growth Substances. Purge Press, Ottawa.
Aghofack-Nguemezi, J., G. Kanmegne, and J. Manka'abiengwa. 2008. Effects of auxins and edible oils on the ripening and water content of banana fruits. J. Plant Sci. 3: 248-254.
Albrecht, T., A. Kehlen, K. Stahl, H.D. Knofel, G. Sembdner, and E.W. Weiler. 1993. Quantification of rapid, transient increases in jasmonic acid in wounded plants using a monoclonal-antibody. Planta. 191: 86-94.
Andersen, C.R., M.L. Brenner, and H.M. Pellett. 1979. Changes in the free Iaa levels in tomato stem tissue, following the release of apical dominance. Hortscience. 14: 476-476.
Anderson, J.M. 1985. Simultaneous determination of abscisic-acid and jasmonic acid in plant-extracts using high-performance liquid-chromatography. J. Chromatogr. 330: 347-355.
Arthur, C.L.and J. Pawliszyn. 1990. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 62: 2145-2148.
Badenoch-Jones, J., D.S. Letham, C.W. Parker, and B.G. Rolfe. 1984. Quantitation of cytokinins in biological samples using antibodies against zeatin riboside. Plant Physiol. 75: 1117.
Bandurski, R.S., J.D. Cohen, J.P. slovin, and D.M. Reinecke. 1995. Auxin biosynthesis and metabolism, p. 39-65. In: P.J. Davies (ed.). Plant hormones: physiology biochemistry, molecular biology. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Baydar, N.G.and N. Harmankaya. 2005. Changes in endogenous hormone levels during the ripening of grape cultivars having different berry set mechanisms. Turk. J. Agric. For. 29: 205-210.
Belardi, R.P.and J.B. Pawliszyn. 1989. The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns. Water Pollut. Res. J. Can. 24: 179-191.
Birkemeyer, C. 2003. Comprehensive chemical derivatization for gas chromatography–mass spectrometry-based multi-targeted profiling of the major phytohormones. J. Chromatogr. A. 993: 89-102.
Blau, K.and A. Darbre. 1993. Esterification, p. 11-28. In: K. Blau and J. Halket (eds.). Handbook of derivatives for chromatography. Wiley, Chichester.
Buchanan, B.B., W. Gruissem, and R.L. Jones. 2000. Biochemistry & molecular biology of plants. 1st ed. American Society of Plant Physiologists, Rockville, Maryland, USA.
Chauvaux, N., R. Child, K. John, P. Ulvskov, B. Borkhardt, E. Prinsen, and H.A. VanOnckelen. 1997. The role of auxin in cell separation in the dehiscence zone of oilseed rape pods. J. Exp. Bot. 48: 1423-1429.
Chen, K.-H., A.N. Miller, G.W. Patterson, and J.D. Cohen. 1988. A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol. 86: 822-825.
Chiwocha, S.D.S., S.R. Abrams, S.J. Ambrose, A.J. Cutler, M. Loewen, A.R.S. Ross, and A.R. Kermode. 2003. A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J. 35: 405-417.
Creelman, R.A.and J.E. Mullet. 1995. Jasmonic acid distribution and action in plants - regulation during development and response to biotic and abiotic stress. P. Natl. Acad. Sci. USA. 92: 4114-4119.
Creelman, R.A.and J.E. Mullet. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant. Phys. 48: 355-381.
Darwin, C. 1880. The power of movement in plants. John Murray, London.
Davies, P.J. 2004. The plant hormones: their nature, occurrence, and functions, p. 1-15. In: P.J. Davies (ed.). Plant Hormones: Biosynthesis, Signal Transduction, Action! 3rd ed. Kluwer Academic Publishers, Dordecht, The Netherlands.
Davies, R.T., D.H. Goetz, J. Lasswell, M.N. Anderson, and B. Bartel. 1999. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell. 11: 365-376.
Delaney, T.P. 2004. Salicylic acid. In: P.J. Davies (ed.). Plant Hormones: Biosynthesis, Signal Transduction, Action! 3rd ed. . Kluwer Academic Publishers, Dordecht, The Netherlands.
Deng, A.X., W.M. Tan, S.P. He, W. Liu, T.G. Nan, Z.H. Li, Q.X. Li, and B.M. Wang. 2008. Monoclonal antibody-based enzyme linked immunosorbent assay for the analysis of jasmonates in plants. J. Integr. Plant Biol. 50: 1046-1052.
Dettmer, K.and W. Engewald. 2002. Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds. Anal. Bioanal. Chem. 373: 490-500.
Durgbanshi, A., V. Arbona, O. Pozo, O. Miersch, J.V. Sancho, and A. Gómez-Cadenas. 2005. Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography−electrospray tandem mass spectrometry. J. Agric. Food Chem. 53: 8437-8442.
Edlund, A., S. Eklof, B. Sundberg, T. Moritz, and G. Sandberg. 1995. A microscale technique for gas chromatography-mass spectrometry measurements of picogram amounts of indole-3-acetic acid in plant tissues. Plant Physiol. 108: 1043.
Engelberth, J., E.A. Schmelz, H.T. Alborn, Y.J. Cardoza, J. Huang, and J.H. Tumlinson. 2003. Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Anal. Biochem. 312: 242-250.
Engelberth, M.J.and J. Engelberth. 2009. Monitoring plant hormones during stress responses. J. Vis. Exp.
Estelle, M., A. Santner, and L.I.A. Calderon-Villalobos. 2009. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 5: 301-307.
Fernandez, B., M.L. Centeno, I. Feito, R. Sancheztames, and A. Rodriguez. 1995. Simultaneous analysis of cytokinins, auxins and abscisic-acid by combined immunoaffinity chromatography, high-performance liquid-chromatography and immunoassay. Phytochem. Anal. 6: 49-54.
Frenkel, C.and R. Dyck. 1973. Auxin inhibition of ripening in Bartlett pears. Plant Physiol. 51: 6-9.
Fuoco, R., S. Giannarelli, B. Muscatello, P. Bogani, M.M. Spiriti, and M. Buiatti. 2010. Comparative determination of some phytohormones in wild-type and genetically modified plants by gas chromatography-mass spectrometry and high-performance liquid chromatography-tandem mass spectrometry. Anal Biochem. 398: 60-68.
Gény, L., C. Deytieux, and B. Donèche. 2005. Importance of hormonal profile on the onset of ripening in grape berries of Vitis Vinifera L. Acta Hort. 682: 99-106.
Gfeller, A., L. Dubugnon, R. Liechti, and E.E. Farmer. 2010. Jasmonate biochemical pathway. Sci. Signal. 3: cm3.
Halket, J.M. 1993. Derivatives for gas chromatography-mass spectrometry, p. 297-326. In: K. Blau and J. Halket (eds.). Handbook of derivatives for chromatography. Wiley, Chichester.
Harris, D.C. 2006. Quantitative chemical analysis. W H Freeman & Co, New York, USA.
Hause, B., I. Stenzel, O. Miersch, H. Maucher, R. Kramell, J. Ziegler, and C. Wasternack. 2000. Tissue-specific oxylipin signature of tomato flowers: allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. Plant J. 24: 113-126.
Hedrich, R., D. Geiger, T. Maierhofer, K.A.S. AL-Rasheid, S. Scherzer, P. Mumm, A. Liese, P. Ache, C. Wellmann, I. Marten, E. Grill, and T. Romeis. 2011. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci. Signal. 4: ra32.
Hou, S., J. Zhu, M. Ding, and G. Lv. 2008. Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography–electrospray tandem mass spectrometry. Talanta. 76: 798-802.
Huang, J., E.A. Schmelz, H. Alborn, J. Engelberth, and J.H. Tumlinson. 2005. Phytohormones mediate volatile emissions during the interaction of compatible and incompatible pathogens: The role of ethylene in Pseudomonas syringae infected tobacco. J. Chem. Ecol. 31: 439-459.
Jarvis, B.C.and S. Yasmin. 1987. Plant-growth regulators and adventitious root development in relation to auxin. Biol. Plantarum. 29: 189-198.
Jiang, Y.M., D.C. Joyce, and A.J. Macnish. 2000. Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene. J. Plant Growth Regul. 19: 106-111.
Kühnel, E., D. D. P. Laffan, G. C. Lloyd-Jones, T. M. del Campo, I. R. Shepperson, and J. L. Slaughter. 2007. Mechanism of methyl esterification of carboxylic acids by trimethylsilyldiazomethane. Angew. Chem. Int. Ed. 46: 7075-7078.
Kataoka, H., H.L. Lord, and J. Pawliszyn. 2000. Applications of solid-phase microextraction in food analysis. J Chromatogr. A. 880: 35-62.
Kondo, S., N. Tsukada, Y. Niimi, and H. Seto. 2001. Interactions between jasmonates and abscisic acid in apple fruit, and stimulative effect of jasmonates on anthocyanin accumulation. J. Jpn. Soc. Hortic. Sci. 70: 546-552.
Kopka, J. 2006a. Current challenges and developments in GC–MS based metabolite profiling technology. J. Biotechnol. 124: 312-322.
Kopka, J. 2006b. Gas chromatography mass spectrometry. In: K. Saito, R.A. Dixon, and L. Willmitzer (eds.). Biotechnology in agriculture and forestry. Springer, New York.
Kucera, B., M.A. Cohn, and G. Leubner-Metzger. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15: 281-307.
La Rue, C.D. 1936. The effect of auxin on the abscission of petioles. P. Natl. Acad. Sci. USA. 22: 254-259.
Lankmayr, E., A. Ranz, and J. Korpecka. 2008. Optimized derivatization of acidic herbicides with trimethylsilyldiazomethane for GC analysis. J. Sep. Sci. 31: 746-752.
Lenton, J., N. Appleford, and S. Croker. 1994. Gibberellins and α-amylase gene expression in germinating wheat grains. Plant Growth Regul. 15: 261-270.
Lin, D.-L., S.-M. Wang, C.-H. Wu, B.-G. Chen, and R.H. Liu. 2008. Chemical derivatization for the analysis of drugs by GC-MS — a conceptual review. J. Food Drug Anal. 16: 1-10.
Lindsey, K. 2001. Plant peptide hormones: The long and the short of it. Curr. Biol. 11: R741-R743.
Little, J.L. 1999. Artifacts in trimethylsilyl derivatization reactions and ways to avoid them. J. Chromatogr. A. 844: 1-22.
Liu, H.T., Y.F. Li, T.G. Luan, C.Y. Lan, and W.S. Shu. 2007. Simultaneous determination of phytohormones in plant extracts using SPME and HPLC. Chromatographia. 66: 515-520.
Ljung, K., R.P. Bhalerao, and G. Sandberg. 2001. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 28: 465-474.
Lloyd-Jones, G.C., E. Kuehnel, D.D.R. Laffan, T.M. del Campo, I.R. Shepperson, and J.L. Slaughter. 2007. Mechanism of methyl esterification of carboxylic acids by trimethylsilyldiazomethane. Angew. Chem. Int. Edit. 46: 7075-7078.
Lohani, S., P.K. Trivedi, and P. Nath. 2004. Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: effect of 1-MCP, ABA and IAA. Postharvest Biol. Technol. 31: 119-126.
Ludewig, M., K. Dorffling, and W.A. Konig. 1982. Electron-capture capillary gas chromatography and mass spectrometry of trifluoroacetylated cytokinins. J. Chromatogr. A. 243: 93-98.
Luthe, G., T.J. van 't Erve, R.H. Rautiainen, and L.W. Robertson. 2010. Trimethylsilyldiazomethane: A safe non-explosive, cost effective and less-toxic reagent for phenol derivatization in GC applications. Environ. Int. 36: 835-842.
Müller, A., P. Düchting, and E.W. Weiler. 2002. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta. 216: 44-56.
Ma, Z., L. Ge, A.S.Y. Lee, J.W.H. Yong, S.N. Tan, and E.S. Ong. 2008. Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry after solid-phase extraction. Anal. Chim. Acta. 610: 274-281.
McAinsh, M.R., C. Browniee, and A.M. Hetherington. 1990. Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature. 343: 186-188.
Miersch, O., H. Bohlmann, and C. Wasternack. 1999. Jasmonates and related compounds from Fusarium oxysporum. Phytochem. 50: 517-523.
Milborrow, B.V. 1967. Identification of (+)-abscisin 2 [(+)-dormin] in plants and measurement of its concentrations. Planta. 76: 93-113.
Nambara, E., M. Okamoto, K. Tatematsu, R. Yano, M. Seo, and Y. Kamiya. 2010. Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res. 20: 55-67.
O'Donnell, P.J., E. Schmelz, A. Block, O. Miersch, C. Wasternack, J.B. Jones, and H.J. Klee. 2003. Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response. Plant Physiol. 133: 1181-1189.
Ohkuma, K., J.L. Lyon, F.T. Addicott, and O.E. Smith. 1963. Abscisin II, an abscission-accelerating substance from young cotton fruit. Science. 142: 1592-1593.
Pan, L.and J. Pawliszyn. 1997. Derivatization/solid-phase microextraction: New approach to polar analytes. Anal. Chem. 69: 196-205.
Pan, X.and X. Wang. 2009. Profiling of plant hormones by mass spectrometry. J. Chromatogr. B. 877: 2806-2813.
Parker, K.E.and W.R. Briggs. 1990. Transport of indole-3-acetic-acid during gravitropism in intact maize coleoptiles. Plant Physiol. 94: 1763-1769.
Penacortes, H., J.J. Sanchezserrano, R. Mertens, L. Willmitzer, and S. Prat. 1989. Abscisic-acid is involved in the wound-induced expression of the proteinase inhibitor-II gene in potato and tomato. P. Natl. Acad. Sci. USA. 86: 9851-9855.
Purgatto, E. 2002. The onset of starch degradation during banana ripening is concomitant to changes in the content of free and conjugated forms of indole-3-acetic acid. J. Plant Physiol. 159: 1105-1111.
Purgatto, E., F.M. Lajolo, J.R.O. do Nascimento, and B.R. Cordenunsi. 2001. Inhibition of beta-amylase activity, starch degradation and sucrose formation by indole-3-acetic acid during banana ripening. Planta. 212: 823-828.
Ranz, A., J. Korpecka, and E. Lankmayr. 2008. Optimized derivatization of acidic herbicides with trimethylsilyldiazomethane for GC analysis. J. Sep. Sci. 31: 746-752.
Saleem, M.F., S. Hussain, M.Y. Ashraf, M.A. Cheema, and M.A. Haq. 2010. Abscisic acid, a stress hormone helps in improving water relations and yield of sunflower (Helianthus Annuus L.) hybrids under drought. Pak. J. Bot. 42: 2177-2189.
Santner, A., L.I.A. Calderon-Villalobos, and M. Estelle. 2009. Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biol. 5: 301-307.
Schaller, A.and C.A. Ryan. 1996. Systemin - a polypeptide defense signal in plants. Bioessays. 18: 27-33.
Schmelz, E.A. 2003. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Sciences. 100: 10552-10557.
Schmelz, E.A., J. Engelberth, H.T. Alborn, P. O'Donnell, M. Sammons, H. Toshima, and J.H. Tumlinson. 2003. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. P. Natl. Acad. Sci. USA. 100: 10552-10557.
Schmelz, E.A., J. Engelberth, J.H. Tumlinson, A. Block, and H.T. Alborn. 2004. The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. Plant J. 39: 790-808.
Schweizer, P., A. Buchala, R. Dudler, and J.P. Metraux. 1998. Induced systemic resistance in wounded rice plants. Plant J. 14: 475-481.
Sembdner, G., R. Atzorn, and G. Schneider. 1994. Plant hormone conjugation. Plant Mol. Biol. 26: 1459-1481.
Setha, S.and S. Kondo. 2005. The interaction between jasmonates and abscisic acid during ripening of apple fruit. Acta Hort. 682: 337-342.
Shen-Miller, J., P. Cooper, and S.A. Gordon. 1969. Phototropism and photoinhibition of basipolar transport of auxin in oat coleoptiles. Plant Physiol. 44: 491-496.
Stashenko, E.E.and J.R. Martinez. 2004. Derivatization and solid-phase microextraction. Trends Analyt. Chem. 23: 553-561.
Stenzel, I., B. Hause, H. Maucher, A. Pitzschke, O. Miersch, J. Ziegler, C.A. Ryan, and C. Wasternack. 2003. Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato – amplification in wound signalling. Plant J. 33: 577-589.
Symons, G.and J. Reid. 2003. Hormone levels and response during de-etiolation in pea. Planta. 216: 422-431.
Symons, G.M., C. Davies, Y. Shavrukov, I.B. Dry, J.B. Reid, and M.R. Thomas. 2006. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol. 140: 150-158.
Taiz, L.and E. Zeiger. 2006. Plant physiology. 4th ed. Sinauer, Sunderland, M. A.
Tromas, A.and C. Perrot-Rechenmann. 2010. Recent progress in auxin biology. Comptes Rendus Biologies. 333: 297-306.
Uknes, S., A.M. Winter, T. Delaney, B. Vernooij, A. Morse, L. Friedrich, G. Nye, S. Potter, E. Ward, and J. Ryals. 1993. Biological induction of systemic acquired-resistance in Arabidopsis. Mol. Plant-Microbe Interact. 6: 692-698.
van't Erve, T.J., R. H. Rautiainen, L. W. Robertson, G. Luthe. 2010. Trimethylsilyldiazomethane: A safe non-explosive, cost effective and less-toxic reagent for phenol derivatization in GC applications. Environ. Int. 36: 835-842.
Vas, G.and K. Vékey. 2004. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 39: 233-254.
Wang, S.Y., M. Faust, and M.J. Line. 1994. Apical dominance in apple (Malus-Domestica Borkh) - the possible role of indole-3-acetic-acid (Iaa). J. Am. Soc. Hortic. Sci. 119: 1215-1221.
Wang, Y., S. Mopper, and K.H. Hasenstein. 2001. Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J. Chem. Ecol. 27: 327-342.
Weber, H., R. Radchuk, U. Conrad, I. Saalbach, M. Giersberg, R.J.N. Emery, H. Kuster, A. Nunes-Nesi, A.R. Fernie, and W. Weschke. 2010. Abscisic acid deficiency of developing pea embryos achieved by immunomodulation attenuates developmental phase transition and storage metabolism. Plant J. 64: 715-730.
Went, F. 1926. On growth-accelerating substances in the coleoptile of Avena sativa. Proc. Kon. Akad. Wetensch. 30: 10-19.
Went, F.W.and K.V. Thimann. 1937. Phytohormones. Macmillan, New York.
Wickson, M.and K.V. Thimann. 1960. The antagonism of auxin and kinetin in apical dominance .2. The transport of Iaa in pea stems in relation to apical dominance. Physiol Plant. 13: 539-554.
Yalpani, N., J. Leon, M.A. Lawton, and I. Raskin. 1993. Pathway of salicylic-acid biosynthesis in healthy and virus-inoculated Tobacco. Plant Physiol. 103: 315-321.
Yang, H.R., K. Tang, H.T. Liu, and W.D. Huang. 2011. Effect of salicylic acid on jasmonic acid-related defense response of pea seedlings to wounding. Sci. Hortic. 128: 166-173.
Zaccai, M., R. Ackerman, O. Genis, J. Riov, and M. Zik. 2009. The bent peduncle phenomenon in roses is a developmental process involving auxin. Plant Sci. 176: 736-743.
Zadra, C., A. Borgogni, and C. Marucchini. 2006. Quantification of jasmonic acid by SPME in tomato plants stressed by ozone. J. Agric. Food Chem. 54: 9317-9321.
Zhang, Z., M.J. Yang, and J. Pawliszyn. 1994. Solid-phase microextraction. A solvent-free alternative for sample preparation. Anal. Chem. 66: 844A-853A.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37873-
dc.description.abstract植物荷爾蒙的同步分析技術,是指同時將植物體中之多種植物荷爾蒙萃取出來,經衍生及純化濃縮後,以具有高靈敏度之分析儀器以將分析物進行定性和定量的分析技術。本試驗以氣相層析質譜儀(gas chromatography-mass spectrometry, GC-MS)作為分析儀器,利用植物荷爾蒙標準品,探討衍生化反應和衍生物純化及濃縮之最適條件。
  以吲哚乙酸(indole-3-acetic acid, IAA)、離層酸(abscisic acid, ABA)、茉莉酸(jasmonic acid, JA)及水楊酸(salicylic acid, SA)四種植物荷爾蒙標準品為材料,利用三甲基矽烷重氮甲烷(Trimethylsilyldiazomethane, TMSD)、N,O-雙三甲基矽烷基三氟乙醯胺(N,O-bis(trimethylsilyl)trifluoroacetamide, BSTFA)及N-第三丁基
二甲基矽基-N- 甲基三氟乙醯胺( N-Methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide,MTBSTFA)為衍生劑,以GC-MS 觀察在25、60、80 和100℃不同衍生溫度下,反應時間分別為30、60 和90 分鐘時各植物荷爾蒙之衍生情形。四種植物荷爾蒙經TMSD、BSTFA 或MTBSTFA 衍生後,皆能於不同滯留時間下產生相對應之成分峰。TMSD 不僅會將IAA、ABA 及SA 進行甲基酯化,亦會產生該分析物之三甲基矽烷化產物,較不利於定性;而BSTFA 及MTBSTFA 兩種衍生劑則分別可將四種植物荷爾蒙衍生為其三甲基矽烷化及丁基二甲基矽烷化之產物;其中以MTBSTFA 作為衍生劑時,所產生的衍生物以GC-MS 分析其反應量較強又穩定,加上衍生反應進行時不需另外提高反應溫度,且在較短的時間內即可完成衍生。因此選擇MTBSTFA 作為此技術之所使用的衍生試劑,最適條件為於25℃下反應30 分鐘。
在樣品前處理部分利用固相微萃取(solid phase microextraction, SPME)及氣相萃取(vapor phase extraction, VPE)兩種方式,將濃縮效果、操作便利性作為考量因子,探討於此分析技術上應用之可能性。雖SPME 及VPE 對樣品皆有濃縮效果並也都能成功吸附衍生產物,但SPME 在操作上較為耗時,每個樣品吸附時間約需10 分鐘,且有樣品脫附不完整的情形,容易影響分析結果。相較之下,以VPE 萃取各植物荷爾蒙TBDMS 衍生物時,萃取時間1~5 分鐘皆有穩定的反應量,且回收率高(96.9~119.5 %)能夠有效在短時間內達到濃縮純化樣品的效果。因此在樣品前處理方面,選擇以VPE 作為濃縮純化之工具,最適萃取條件為於200℃下萃取2 分鐘。
本研究確立了可運用於植物荷爾蒙同步分析技術中之衍生劑之種類和衍生反應條件,以及適當的樣品純化及濃縮方式及條件,以有效增加微量植物荷爾蒙於儀器中的偵測訊號,提高分析物的可偵測性,將有助於未來植物荷爾蒙之研究。
zh_TW
dc.description.abstractThe techniques of simultaneous analysis of phytohormones refer to a series of procedures that begin with extraction of various phytohormones simultaneously,
followed by comprehensive derivatization, adequate purification and concentration, and the final quantification and qualification via instrumental analysis that possess high sensitivity and selectivity. In this study, derivatization protocols and sample pre-treatment methods for phytohormone standards were studied by using GC-MS as the analytical tool.
Three derivatization reagents, Trimethylsilyldiazomethane ( TMSD ),
N,O-bis(trimethylsilyl)trifluoroacetamide,(BSTFA), N-Methyl-N-(tert-butyldimethylsilyl)
trifluoroacetamide(MTBSTFA), were applied to react with four phytohormone standards, indole-3-acetic acid(IAA), abscisic acid(ABA), jasmonic acid (JA), and salicylic acid(SA)under 25、60、80 or 100℃ for 30, 60, or 90 min followed by GC-MS analysis. Results showed that four phytohormones were successfully derivatized by the three derivatization reagent. However, TMSD would trimethylsilylate and methylate IAA, ABA, and SA at the same time causing problems in qualification; while BSTFA and MTBSTFA would trimethysilylate and tert-butyldimthylsilylate four phytohormones, respectively. Furthermore, derivatization products of MTBSTFA yield
stronger signal responses with no need for higher reaction temperature or longer reaction time. Hence, MTBSTFA was considered to be the recommended derivatization reagent and the optimum reaction condition was 25℃for 30 min.
For concentration and purification of the phytohormone derivatives, two extraction techniques, solid phase microextraction(SPME)and vapor phase extraction(VPE),
were compared based on the concentration effect and the ease of handling. Although both SPME and VPE displayed proper concentration ability on phytohormonederivatives, the former method took more time on adsorption and desorption, which is more time-consuming than the latter one. In addition, VPE performed steadily during 1~5 min extraction time period with high recoveries(96.9~119.5 %)of TBDMS derivatives of four phytohormones. Consequently, the VPE method was considered as the recommended concentration method and the optimum extraction condition was 2 minutes at 200℃ per sample.
In this study, two important steps during the simultaneous analysis of phytohormones: derivatization and sample pre-treatment were studied. Optimum conditions for these two steps in analyzing four phytohormone standards were
established. The results showed enhanced detectability of target analytes and should be very useful in the further development of a complete procedure for simultaneous
analysis of plant hormones in plant tissues.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:48:31Z (GMT). No. of bitstreams: 1
ntu-100-R96628209-1.pdf: 6274021 bytes, checksum: 454de9ab4539cee2632c8a7ab01eb0df (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書……………………………………………………………………....i
謝辭……………………………………………………………………………………...ii
中文摘要………………………………………………………………………….…….iii
英文摘要………………………………………………………………………………...v
第壹章 前言………………………………………………………………………...1
第貳章 前人研究與實驗架構
2.1植物荷爾蒙簡介………………………………………………………...3
2.2植物荷爾蒙之分析方式………………………………………………...8
2.3氣相層析質譜儀及衍生化反應…….………..………………………....8
2.4樣品純化及濃縮….……………………………………………………11
2.5實驗架構……………………………………………………….………12
第參章 以三種不同衍生試劑衍生四種植物荷爾蒙之效果及衍生條件之探討
3.1摘要…………………………………………………………………….25
3.2前言………………………………………....…………………..…….. 25
3.3材料與方法……………………………..…..…………………..…….. 26
3.4結果與討論……………………………..…..………………………… 29
第肆章 以固相微萃取技術與氣相萃取技術進行樣品純化及濃縮
4.1摘要…………………………………………………………………….71
4.2前言…………………………………………………………….………71
4.3材料與方法……………………………………………………..….…..73
4.4結果與討論…………………………………………………………….77
第伍章 結論……………………………………………..……………………….......96
參考文獻……………………………………………………………..…………..…….98
附錄…………………………………………………………..……………………….112
dc.language.isozh-TW
dc.subject氣相萃取zh_TW
dc.subject植物荷爾蒙zh_TW
dc.subject固相微萃取zh_TW
dc.subject同步分析zh_TW
dc.subject衍生化zh_TW
dc.subject氣相層析質譜儀zh_TW
dc.subjectgas chromatography-mass spectrometry (GC-MS)en
dc.subjectPhytohormonesen
dc.subjectsimultaneous analysisen
dc.subjectderivatizationen
dc.subjectsolid phase microextraction (SPME)en
dc.subjectvapor phase extraction (VPE)en
dc.title以氣相層析質譜儀同步分析多種植物荷爾蒙技術之研究zh_TW
dc.titleStudy on the Techniques of Simultaneous Analysis of Various Phytohormones by Gas Chromatography-Mass Spectrometry(GC-MS)en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳開憲(Kai-Hsien Chen),張祖亮(Tsu-Liang Chang)
dc.subject.keyword植物荷爾蒙,同步分析,衍生化,固相微萃取,氣相萃取,氣相層析質譜儀,zh_TW
dc.subject.keywordPhytohormones,simultaneous analysis,derivatization,solid phase microextraction (SPME),vapor phase extraction (VPE),gas chromatography-mass spectrometry (GC-MS),en
dc.relation.page115
dc.rights.note有償授權
dc.date.accepted2011-08-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
6.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved