請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37871完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖中明(Chung-Min Liao) | |
| dc.contributor.author | Yu-Hui Chiang | en |
| dc.contributor.author | 江彧暉 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:48:24Z | - |
| dc.date.available | 2010-07-03 | |
| dc.date.copyright | 2008-07-03 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-06-27 | |
| dc.identifier.citation | Ackroyd R, Kelty C, Brown N, Reed M, 2001. The history of photodetection and photodynamic therapy. Photochemistry and Photobiology 74: 656-669.
Amato I, 1989. Marking the right stuff. Science News 136: 108-110. Arami H, Mazloumi M, Khalifehzadeh R, Sadrnezhaad SK, 2007. Sonochemical preparation of TiO2 nanoparticles. Materials Letters 61: 4559-4561. Avakian MD, Dellinger B, Fiedler H, Gullet B, Koshland C, Marklund S, Oberdörster G, Safe S, Sarofim A, Smith A, Smith KR, Schwartz D, Suk WA, 2002. The origin, fate, and health effects of combustion by products: a research framework. Environmental Health Perspectives 110: 1155-1162. Baan R, Kurt S, Yann G, Béatrice S, Fatiha EG, Vincent C, 2006. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncology 7: 295-296. Balshaw DM, Philbert M, Suk WA, 2005. Research strategies for safety evaluation of nanomaterials, Part II: Nanoscale technologies for assessing risk and improving public health. Toxicological Sciences 88: 298-306. Beaumont JJ, Sandy MS, Sherman CD, 2004. Titanium dioxide and lung cancer. Journal of Occupational and Environmental Medicine 46: 759. Berges M, Möhlmann C, Swennen B, Rompaey YV, Berghmans P, 2007. Workplace exposure characterization at TiO2 nanoparticle production. 3rd International Symposium on Nanotechnology, Occupational and Environmental Health, Taipei, Taiwan. Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB, Hext PM, Warheit DB, Everitt JI, 2002. Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicological Sciences 70: 86-97. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI, 2004. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicological Sciences 77: 347-357. Biswas P, Wu CY, 2005. Nanoparticles and the environment. Journal of Air and Waste Management Association 55: 708-746. Borm PJA, Schins RPF, Albrecht C, Albrecht C. 2004. Inhaled particles and lung cancer, part B: Paradigms and risk assessment. International Journal of Cancer 110: 3-14. Boffetta P, Gaborieau V, Nadon L, Parent ME, Weiderpass E, Siemiatycki J, 2001. Exposure to titanium dioxide and risk of lung cancer in a population-based study from Montreal. Scandinavian Journal of Work Environment and Health 27: 227-232. Boffetta P, Soutar A, Weiderpass E, Cherrie J, Granath F, Andersen A, Anttila A, Blettner M, Gaborieau V, Klug S, Langard S, Luce D, Merletti F, Miller B, Mirabelli D, Pukkala E, Adami HO, 2003. Historical cohort study of workers employees in the titanium dioxide production industry in Europe. Department of Medical Epidemiology Karolinska Institute, Stockholm, Sweden. Chen JL, Fayerweather WE, 1988. Epidemiologic study of workers exposed to titanium dioxide. Journal of Occupational and Environmental Medicime 30: 937-942. Cho M, Chung H, Choi W, Yoon J, 2004. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Research 38: 1069-1077. Colvin VL, 2003. The potential environmental impact of engineered nanomaterials. Nature Biotechnology 21: 1166-1170. Davis RJ, 1992. Synthesis and characterization of Vpi-5 supported TiO2. Chemistry of Materials 4: 1410-1415. Donaldson K, Beswick PH, Gilmour PS, 1996. Free radical activity associated with the surface of particles: A unifying factor in determining biological activity? Toxicology Letters 88: 293-298. Donaldson K, Stone V, Clouter A, Renwick L, MacNee W, 2001. Ultrafine particles. Occupational and Environmental Medincine 58: 211-216. Donaldson K, 2002. The pulmonary toxicology of ultrafine particles. Journal of Aerosol Medicine 15: 213-220. Dybdahl M, Risom L, Bornholdt J, Autrup H, Loft S, Wallin H, 2004. Inflammatory and genotoxic effects of diesel particles in vitro and in vivo. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 562: 119-131. Ehrenberg M, McGrath JL, 2005. Binding between particles and proteins in extracts: implications for microrheology and toxicity. Acta Biomatherialia 1: 305-315. Elder A, Gelein R, Finkelstein JN, Driscoll KE, Harkema J, Oberdörster G, 2005. Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, lung inflammation and histopathology. Toxicological Sciences 88: 614-629. Elo R, Määttä K, Uksila E, Arstila AU, 1972. Pulmonary deposits of titanium dioxide in man. Archives of Pathology 94: 417-424. Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben, Ravenzwaay BV, 2008. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticlea in rats. Archives of Toxicology 82: 151-157. Fayerweather WE, Karns ME, Gilby PG, Chen JL, 1992. Epidemiologic study of lung cancer mortality in workers exposed to titanium tetrachloride. Journal of Occupational and Environmental Medicime 34: 164-169. Findeiaen W, 1935. The precipitation of small air-suspended particles in human lungs during respiration. Pflugers Archiv Fur Die Gemte Physioligie Des Menschen Und Der Tiere 236: 367-379. Fryzek JP, Chadda B, Marano D, White K, Schweitzer S, McLaughlin JK, Blot WJ, 2003. A cohort mortality study among titanium dioxide manufacturing workers in the United States. Journal of Occupational and Environmental Medicine 45: 400-409. Grassian VH, O’Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS, 2007. Inhalation exposure study of titanium dioxide nanoparticles with aprimary particle size of 2 to 5 nm. Environmental Health Perspectives 115: 397-402. Griffitt RJ, Well R, Hyndman KA, Denslow ND, Powers K, Barber DS, 2007. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environmental Science and Technology 41: 8178-8186. Gurr JR, Wang ASS, Chen HC, Jan KY, 2005. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213: 66-73. Handy RD, Shaw BJ, 2007. Toxic effects of nanoparticles: Implications for public health, risk assessment and the public perception of nanotechnology. Health, Risk and Society 9: 125-144. Handy RD, Kammer F, Lead JR, Hassellöv M, Owen R, Crane M, 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17: 287-314. Hashimoto K, Wasada K, Toukai N, Kominami H, Kera Y, 2000. Photocatalytic oxidation of nitrogen monoxide over titanium (IV) oxide nanocrystals large size areas. Journal of Photochemistry and Photobiology A-Chemistry 136: 103-109. Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg B, BellmannW, Koch W, Levsen K, 1995. Chronic inhalation exposure of wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhalation Toxicology 7: 533-556. Heyder J, Roudolf G, 1984. Mathematical-model of paticle deposition in the human respiratory-tract. Journal of Aerosol Science 15: 697-707. Hill AV, 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Journal of Physiology 4: 4-7. Holford NHG, Sheiner LB, 1982. Kinetics of pharmacologic response. Pharmacology and Therapeutics 16: 143-166. Höhr D, Steinfartz Y, Schins RPF, Knaapen AM, Martra G, Fubini B, Borm PJA, 2002. The surface area rather than the surface coating determines the acute inflammatory response after instillation of fine and ultrafine TiO2 in the rat. International Journal of Hygiene and Environmental Health 205: 239-244. IARC. 2006. Titanium dioxide Group 2B. vols. 9, International Agency for Research on Cancer, World Health Organization, Lyon. ICRP. 1994. Human respiratory tract model for radiological protection, a report of a task group of the international commission on radiological protection. No. 66, International Commission on Radiological Protection, New York, USA. Jefferson DA, 2000. The surface activity of ultrafine particles. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 358: 2683-2692. Kakinoki K, Yamane K, Teraoka R, Otsuka M, Matsuda Y, 2004. Effect of realative humidity on the photocatalytic activity of titanium dioxide and photostability of famotidine. Journal of Pharmaceutical Sciences 93: 377-381. Katari JEB, Colvin VL, Alivisatos AP, 1994. X-Ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. Journal of Physical Chemistry 98: 4l09-4117. Kenakin T, 1997. Pharmacologic Analysis of Drug-Receptor Interactions. Lippincott-Raven Publishers, Philadelphia, USA. Kuempel ED, O’Flaherty EJ, Stayner LT, Smith RJ, Green FHY, Vallyathan V, 2001. A biomathematical model of particle clearance and retention in the lungs of coal miners. Regulatory Toxicology and Pharmacology 34: 69-87. Kuempel ED, Tran CL, Castranova V, Bailer AJ, 2006. Lung dosimetry and risk assessment of nanoparticles: Evaluating and extending current models in rats and humans. Inhalation Toxicology 18: 717-724. Lee KP, Trochimowicz HJ, Reinhardt CF, 1985. Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicology and Applied Pharmacology 79: 179-192. Lighty JS, Veranth JM, Sarofim AF, 2000. Combustion aerosols: factors governing their size and composition and implications to human health. Journal of Air and Waste Management Association 50: 565-618. Lomer MCE, Thompson RPH, Powell JJ, 2002. Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proceedings of the Nutrition Society 61: 123-130. Lovern SB, Strickler JR, Klaper R, 2007. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (Titanium dioxide, Nano-C60, and C60HxC70Hx). Environmental Science and Technology 41: 4465-4470. Marier M, Hannebauer B, Holldorff H, Albers P, 2006. Dose lung surface promote disaggregation of nanostructured titanium dioxide? Journal of Occupational and Environmental Medicine 48: 1314-1320. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA , Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB, 2006. Safe handling of nanotechnology. Nature 444: 267-269. Maynard AD, Aitken RJ, 2007. Assessing exposure to airborne nanomaterials: Current abilities and future requirements. Nanotoxicology 1: 26-41. Määttä K, Arstila AU, 1975. Pulmonary deposits of titanium dioxide in cytologic and lung biopsy specimens: light and electron microscopic X-ray analysis. Laboratory Investigation 33: 342-346. Moore MN, 2006. Do nanoparticles present ecotoxicological risk for the health of the aquatic environment. Environment International 32: 967-976. Moore MN, Allen JI, Somerfield PJ, 2006. Autophagy: Role in surviving environmental stress. Marine Environment Researsh 62: S420-S425. Moore MN, Viarengo A, Donkin P, Hawkins PDA, 2007. Autophagy and lysosomal reactions to stress in the hepatopancreas of blue mussels. Aquatic Toxicology 80-91. Moran CA, Mullick FG, Ishak KG, Johnson FB, Hummer WB, 1991. Identification of titanium in human tissues: probable role in pathologic processes. Human Pathology 22: 450-454. Morgan K. 2005. Development of a preliminary framework for informing the risk analysis and risk management of nanoparticles. Risk Analysis 25: 1621-1635. Murray CB, Norris DJ, Bawendi MG, 1993. Synthesis and characterization of nearly monodisperse Cde (E=S, Se, Te) semiconductor nanocrystallites. Journal of the American Chemical Society 115: 8706-8715. Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311: 622-627. NRC. 1983. Risk assessment in the federal government: managing the process. Natioal Research Council, Washington, DC. NIOSH, 2005. Evaluation of health hazard and recommendations for occupational exposure to titanium dioxide. Draft, National Institute for Occupational Safety and Health, Cincinnati, American. NIOSH. 2007. Progress toward safe nanotechnology in the workplace. National Institute for Occupational Safety and Health, Cincinnati, American. Nothynek GJ, Lademann J, Ribaud C, Roberts MS, 2007. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen. Critical Reviews in Toxicology 37: 251-277. Owen R, Handy R, 2007. Formulating the problems for environmental risk assessment of nanomaterials. Environmental Science and Technology 41: 5582-5588. Oberdörster G, Ferin J, Lehnert BE , 1994. Correlation between particle size, in vivo particle persistence, and lung injury. Environmental Health Perspectives 102: S173-S179. Oberdörster G, 2001. Pulmonary effects of inhaled ultrafine particles. International Archives of Occupational and Environmental Health 74: 1-8. Oberdörster G, Atudorei ZSV, Lunts AERGA, Kreyling W, Cox C, 2002. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. Journal of Toxicology and Environmental Health, Part A 65: 1531-1543. Oberdörster E, 2004. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in brain of juvenile largemouth bass. Environmental Health Perspectives 112: 1058-1062. Oberdörster G, Oberdörster E, Oberdörster J, 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives 113: 823-839. Parkin IP, Palgrave RG, 2005. Self-cleaning coatings. Journal of Materials Chemistry 15: 1689-1695. Pott F, Althoff GH, Roller M, Höhr D, Friemann Jl, 1998. High acute toxicity of hydrophobic ultrafine titanium dioxide in an intratracheal study with several dusts in rats. In: Relationships between respiratory disease and exposure to air pollution, pp 270-277, ILSI Publishers, Washington, DC. USA. Preining O, 1998. The physical nature of very, verysmall particles and its impact on their behaviour. Journal of Aerosol Science 29: 481-495. Pui DYH, Chen DR, Brock JR, 1997. Nanometer particles: A new frontier for multidisciplinary research. Journal of Aerosol Science 28: 539-544. Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, Schiffmann D, 2002. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environmental Health Perspectives 110: 797-800. Renwick LC, Brown D, Clouter A, Donaldson K, 2006. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occupational and Environmental Medicine 61: 442-447. Rode LE, Ophus EM, Glyseth B, 1981. Massive pulmonary deposition of rutile after titanium dioxide exposure. Acta Pathologicaet Microbiologica Scandinavica, Section A-Phathology 89: 455-461. Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL, 2006. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and guman lung epithelial cells. Toxicological Sciences 92: 174-185. Serpone N, Dondi D, Albini A, 2007. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica Chimica Acta 360: 794-802. Siemiatycki J, Bégin D, Dewar R, Gérin M, Lakhani R, Nadon L, Richardson L, 1991. Risk factors for cancer in the workplace. CRC Publishers, pp 63, 153, 185, 272, 280. Florida, USA. Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H, 2006. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environmental Health Perspectives 114: 328-333. Suzuki H, Toyooka T, Ibuki Y, 2007. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatte analysis. Environmental Science and Technology 41: 3018-3024. Tran CL, Jones A, Cullen RT, Donaldson K, 1999. Mathematical modeling of the retention and clearance of low-toxicity particles in the lung. Inhalation Toxicology 11: 1059-1076. Tran CL, Buchanan D, Jones AD, 2000. Mathematical modeling to product the response to poorly soluble particle in rat lungs. Inhalation Toxicology 12: S403-S409. Tran CL, Miller BG, Jones AD, 2003. Risk assessment of inhaled particles using a physiologically based mechanistic model. Institute of Occupational Medicine for the Health and Safety Executive, UK. Trentler TJ, Denler TE, Bertone JF, Agrawal A, Colvin, VL, 1999. Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. Journal of the American Chemical Society 121: 1613-1614. Tsuji JS, Maynard AD, Howard PC, James JT, Lan CW, Warheit DB, Santamaria AB, 2006. Research strategies for safety evaluation of nanomateruals, Part IV: Risk assessment of nanoparticles. Toxicological Sciences 89: 42-50. Unfried K, Albrecht C, Klotz LO, Mikecz AV, Grether-beck S, Schins RPF, 2007. Cellular responses to nanoparticles: Target structures and mechanisms. Nanotoxicology 1: 52-71. USEPA. 1976. Interim procedures and guidelines for health risk and 23 economic impact assessments of suspected carcinogens. 4l: 21402-21405. US Environmental Protection Agency, Washington, DC. USEPA. 1989. Guidance manual for assessing human health risks from chemically contaminated, fish and shellfish. US Environmental Protection Agency, Washington, DC. USEPA. 2004. Air Quality Criteria for Particulate Matter. 3: 600/P-95-001Cf. US Environmental Protection Agency, Washington, DC. Venitz J, 1995. Pharmacokinetic-pharmacodynamic modeling of reversible drug effects. In: Derendorf H, Hochhaus G, (eds) Handbook of Pharmacokinetic/ Pharmacodynamic Correlation. CRC Publishers, Florida, USA. Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F, Zhao Y, Chai Z, 2007. Acute toxicology and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters 168: 176-185. Warheit DB, Reed KL, Webb TR, 2003. Pulmonary toxicology studies in rats with triethoxyoctylane (OTES)-coated, pigment-grade titanium dioxide particles: bridging studies to predict inhalation hazard. Experimental Lung Research 29: 593-606. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL, 2006. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is no dependent upon particle size and surface area. Toxicological Sciences 91: 227-236. Win KY, Feng SS, 2005. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26: 2713-2722. Wittmaack K, 2007. In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environmental Health Perspectives 115: 187-194. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE, 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters 6: 1794-1807. Yu CP, Yoon KJ, Chen YK, 1991. Retention modeling of diesel exhaust particles in rats and humans. Journal of Aerosol Medicine-Deposition Clearance and Effects in the Lung 4: 79-115. Yu WW, Falkner JC, Yavuz CT, Colvin VL, 2004. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate. Chemical Communications 20: 2306-2307. Zhang Q, Kusaka Y, 2000. Chmparative injurious and proinflammatory effects of three ultrafine metals in macrophages from young and old rats. Inhalation Toxicology 12: 267-273. 經濟部投資業務處。2008。http://investintaiwan.nat.gov.tw/zh-tw/ | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37871 | - |
| dc.description.abstract | 二氧化鈦 (TiO2) 為典型之低溶解性微粒 (Poorly Soluble Particles),全球 TiO2 產量之 70% 使用於塗料產品中,近年來 TiO2 常添加於化妝品、防曬油中及製作光催化劑。生產 TiO2 之包裝、研磨、混合及機械維修過程皆可能產生高吸入暴露,國際癌症研究署 (International Agency for Research on Cancer, IARC) 於 2006 年將 TiO2重新歸類為可能對人類產生致癌性之物質。本研究目的為以風險評估架構為基礎結合暴露與效應評估,推估TiO2 工廠工作人員肺泡組織嗜中性白血球 (Polymorphonuclear 或 Leukocytes, PMN) 上升及肺腫瘤 (Lung Tumor) 產生率之超越風險。本研究採用之風險評估資料以美國及歐洲境內 TiO2 工廠工作人員之暴露數據為主。本研究首先應用對數常態分佈模式擬合 TiO2 工廠之氣懸 TiO2 奈米微粒 (TiO2 NPs) 粒徑分佈,並以生理為基礎之肺部模式 (Physiologically Based Lung Model) 推估 TiO2 工廠工作人員吸入不同粒徑銳鈦礦 (Anatase) 及金紅石 (Rutile) 之暴露程度,最後再以 Hill 模式重建 PMN上升及肺腫瘤產生率之毒理效應曲線。以對數常態分佈模式擬合 TiO2 工廠內之氣懸 TiO2 NPs 粒數分佈,得知幾何粒徑平均數為 24.81 nm,幾何標準偏差為 1.38 (r2 = 0.95);而工廠外氣懸 TiO2 NPs 之幾何粒徑平均為 42.71 nm,幾何標準偏差為 1.45 (r2 = 0.88)。效應分析結果顯造成 50% 之 PMN 上升效應劑量 (EC50) 為 0.11 m2 g-1 (n = 2.1, r2 = 0.88),造成 50% 之肺腫瘤發生率劑量為 1.15 m2 g-1 (n = 5.32, r2 = 0.85)。暴露評估結果顯示美國包裝工人肺泡表面負荷銳鈦礦及金紅石之最高值分別為 0.1744 及 0.122 m2;肺泡間隙累積最高值分別為 0.9804 及 0.6856 m2,而歐洲表面處理工人肺泡表面負荷銳鈦礦及金紅石之最高值則分別為 0.4 及 0.28 m2;肺泡間隙累積之最高值分別為 2.25 及 1.57 m2。TiO2 引起 PMN 上升效應之風險曲線指出,美國包裝工人暴露於銳鈦礦及金紅石製程中引發 PMN 上升的 50 % (Risk = 0.5) 超越風險值分別為標準值之 67.33 及 35.9 倍;而歐洲表面處理工人分別為標準值之 84.94 及 71.28 倍。TiO2 引起肺腫瘤產生效應之風險曲線指出,歐洲表面處理工人暴露於銳鈦礦及金紅石製程中肺腫瘤產生的 50 % 超越風險值分別為 2×10-4 及 1.81×10-6,而歐洲境內其餘之工作族群及美國境內所有之工作族群皆無因銳鈦礦及金紅石暴露而引發肺腫瘤之風險。 | zh_TW |
| dc.description.abstract | Titanium dioxide (TiO2) is a typical poorly soluble particles which was accounted for 70% of the total production volume of pigments worldwide. TiO2 is appied to produce cosmetics, sunscreens and catalytic agen in recently. High inhalation exposures occur in TiO2 production during packing, milling, mixed, and maintenance. International Agency for Research on Cancer (IARC) has recently classified TiO2 as possibly carcinogenic to humans in 2006. The purpose of this thesis is to combine the assessments of exposure and related effect to estimate the exceedence risks for workers in TiO2 manufacturing factories. This study used two datasets related to TiO2 dust concentrations in TiO2 plants in the United States (US) and Europe (EU), respectively,to explore the risk assessment. We apply the lognormal probabilistic model to fit particle size distribution data of airborne TiO2 in the TiO2 manufacturing factories. We estimate the inhalation risk of different size ranges of TiO2 natase and Rutile.in the TiO2 manufacturing factories by application physiologically based lung model (PB Lung Model). Three-parameter Hill model is used to reconstruct the dose-response profiles for polymorphonuclear leukocyte (PMN) elevation and lung tumor effects induced by TiO2 dust. The optimal fit of the lognormal probabilistic model (r2 = 0.95) resulting in a geometric mean (gm) of 24.81 nm with a geometric standard deviation (gsd) of 1.38. The optimal fit model (r2 = 0.91) for outside of factory with a gm of 42.71 nm and a gsd of 1.45. The results show the median effect (EC50) for PMN elevation is 0.11 m2 g-1 (n = 2.1, r2 = 0.88) and EC50 for lung tumor proportion is 1.15 m2 g-1 (n = 5.32, r2 = 0.85). The highest alveolar surface burden of packers in US factories are 0.1744 and 0.122 m2 for anatase and rutile, whereas that are 0.4 and 0.28 m2 for surface treatment workers in EU. The highest interstitial burden of packers in US were 0.9804 and 0.6856 m2 for anatase and rutile, whereas that were 2.25 and 1.57 m2 for surface treatment workers in EU. The exceedence risks curve of PMN elevation effect at risk = 0.5 of packers in US show the highest 67.33 and 35.9 fold of standard PMN counts for TiO2 anatase and rutile, whereas that are 84.94 and 71.28 fold for surface treatment workers in EU. The lung tumor risk results show 2×10-4 and 1.81×10-6 of lung tumor proportion for TiO2 anatase and rutile of surface treatment workers in EU. Then the lung tumor proportion are lower than 10-4 for all of the work categories in US and EU (except for surface treatment ) for anatase and rutile that unlikely induce lung tumor effect . | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:48:24Z (GMT). No. of bitstreams: 1 ntu-97-R95622009-1.pdf: 914007 bytes, checksum: 909e1787ed597ef040e7644655adcc6b (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 III 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XI 壹、前言 1 貮、動機與目的 3 2.1 研究動機 3 2.2 研究目的 4 參、文獻回顧 5 3.1奈米微粒特性 5 3.2 二氧化鈦特性 8 3.2.1 晶體特性 8 3.2.2 粒徑分佈與比表面積 9 3.3 二氧化鈦暴露危害 11 3.3.1 案例研究 11 3.3.2流行病學研究 12 3.4 風險評估架構 15 3.5 暴露評估 18 3.5.1肺部沉澱模式 18 3.5.2建議暴露標準 20 3.6 劑量效應評估 22 3.6.1 生理動力模式 22 3.6.2吸入效應 23 肆、材料與方法 26 4.0 研究架構 26 4.1 危害鑑定–重新分析暴露之流行病學資料 26 4.2 粒徑分佈與晶體型態 31 4.3 暴露分析–以生理為基礎之肺部模式 (PB 肺部模式) 35 4.4 效應分析模式 40 4.4.1 PMN 上升效應 40 4.4.2 腫瘤效應 43 4.3.3 物種間之效應校正 45 4.5風險特性化 47 4.6統計方法與分析 48 伍、結果 49 5.1粒徑分佈與晶體之比表面積濃度變化 49 5.2工作人員之暴露評估 54 5.3工作人員之危害效應評估 72 5.4工作人員之健康風險推估 75 陸、討論 82 6.1 表面積濃度及粒徑分佈 82 6.2 暴露及效應評估 84 6.3 健康風險推估 86 柒、結論 88 捌、未來研究建議 90 參考文獻 91 | |
| dc.language.iso | zh-TW | |
| dc.subject | 風險評估 | zh_TW |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 比表面積 | zh_TW |
| dc.subject | 肺部生理模式 | zh_TW |
| dc.subject | 奈米微粒 | zh_TW |
| dc.subject | 奈米毒理 | zh_TW |
| dc.subject | Titanium dioxide | en |
| dc.subject | risk assessment | en |
| dc.subject | nanotoxicology | en |
| dc.subject | Nanoparticle | en |
| dc.subject | Physiologically based lung model | en |
| dc.subject | Specific surface area | en |
| dc.title | 作場所氣懸二氧化鈦奈米微粒之相關暴露危害評估 | zh_TW |
| dc.title | Assessing the airborne titanium dioxide nanoparticles-related exposure hazard at workplace | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周立強(Li-John Jou),邱嘉斌(Chia-Pin Chio),陳柏青(Bo-Ching Chen),陳詩潔(Szu-Chieh Chen) | |
| dc.subject.keyword | 二氧化鈦,比表面積,肺部生理模式,奈米微粒,奈米毒理,風險評估, | zh_TW |
| dc.subject.keyword | Titanium dioxide,Specific surface area,Physiologically based lung model,Nanoparticle,nanotoxicology,risk assessment, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-06-27 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 892.58 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
