請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37861完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭士康 | |
| dc.contributor.author | Ming-Iu Lai | en |
| dc.contributor.author | 賴明佑 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:47:51Z | - |
| dc.date.available | 2013-07-11 | |
| dc.date.copyright | 2008-07-11 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-06-28 | |
| dc.identifier.citation | [1] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge, 2005.
[2] S. R. Saunders, Antenna and Propagation for Wireless Communication System, John Wiley & Sons, ch. 15, 1999. [3] C. B. Dietrich, K. Dietze, J. R. Nealy, and W. L. Stutzman, “Spatial, polarization, and pattern diversity for wireless handheld terminals,” IEEE Trans. Antennas Propag., vol. 49, no. 9, pp. 1271-1281, Sep. 2001. [4] R. G. Vaughan and J. B. Andersen, “Antenna diversity in mobile communications,” IEEE Trans. Veh. Technol., vol. VT-36, pp. 149-172, Apr. 1987. [5] S. Smith and D. V. Thiel, Switched Parasitic Antennas for Cellular Communications, Artech House, 2002. [6] R. Vaughan, “Switched parasitic elements for antenna diversity,” IEEE Trans. Antennas Propag., vol. 47, no. 2, pp. 309-405, Feb. 1999. [7] N. L. Scott, M. O. Leonard-Taylor, R. G. Vaughan, “Diversity gain from a single-port adaptive antenna using switched parasitic elements illustrated with a wire and monopole prototype,” IEEE Trans. Antennas Propag., vol. 47, no. 6, pp. 1066-1070, June 1999. [8] M. A. Jensen and J. W. Wallace, “A review antenna and propagation for MIMO Wireless Communications,” IEEE Trans. Antennas Propag., vol. 52, no. 11, pp. 2810-2824, Nov. 2004. [9] A. Alexiou and M. Haardt, “Smart antenna technologies for future wireless systems: Trends and Challenges,” IEEE Communication Magazine, pp. 90-96, Sep. 2004. [10] D. W. Browne, M. Manteghi, M. P. Fitz, and Y. Rahmat-Samii,” Experiments with compact antenna arrays for MIMO radio communications,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3239-3250, Nov. 2006. [11] A. S. Konanur, K. Gosalia, S. H. Krishnamurthy, B. Hughes, and G. Lazzi, “Increasing wireless channel capacity through MIMO systems employing co-located antennas, “IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 1837-1844, June 2005. [12] S. Kawasaki and T. Itoh, “A slot antenna with electronically tunable length,” in Proc. IEEE AP-S Int. Symp., June 24-28, 1991, pp.130-133. [13] D. Peroulis, K. Sarabandi, and L. P. B. Katehi, “Design of reconfigurable slot antenna,” IEEE Trans. Antennas Propag., vol. 53, no. 2, pp. 645-654, Feb. 2005. [14] N. Behdad and K. Sarabandi, “Dual-band reconfigurable antenna with a very wide tunability range,” IEEE Trans. Antennas Propag., vol. 54, no. 2, pp. 409-416, Feb. 2006. [15] N. Behdad and K. Sarabandi, “A varactor-tuned dual-band slot antenna,” IEEE Trans. Antennas Propag., vol. 54, no. 2, pp. 401-408, Feb. 2006. [16] F. Yang and Y. Rahmat-Samii, “Patch antennas with switchable slots (PASS) in wireless communications: concepts, designs and applications,” IEEE Antennas and Propaga. Magazine, vol. 47, no. 2, pp. 13-29, April, 2005. [17] N. Jin, F. Yang, and Y. Rahmat-Samii, “A novel patch antenna with switchable slot (PASS): dual-frequency operation with reversed circular polarizations,” IEEE Trans. Antennas Propag., vol. 54, no. 3, pp. 1031-1034, Mar. 2006. [18] B. A. Cetiner, H. Jafarhani, J. Y. Qian, H. J. Yoo, A. Grau, and F. D. Flaviis, “Multifunctional reconfigurable MEMS integrated antennas for adaptive MIMO systems,” IEEE Communication Magazine, vol. 42, no. 12, pp. 62-70, Dec. 2004. [19] A. Grau, M. J. Lee, J. Romeu, H. Jafarkhani, L. Jofre and F. D. Flaviis, “A multifunctional MEMS-Reconfigurable pixel antenna for narrowband MIMO communications,” in Proc. IEEE AP-S Int. Symp., Honolulu, HA, June 10-15, 2007, pp.489-492. [20] G. H. Huff and J. T. Bernhard, “Integration of packaged RF MEMS switches with radiation pattern reconfigurable square spiral microstrip antennas,” IEEE Trans. Antennas Propag., vol. 54, no. 2, pp. 464-469, Feb. 2006. [21] C. W. Jung, M. J. Lee, G. P. Li, and F. D. Flaviis, “Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches,” IEEE Trans. Antennas Propag., vol. 54, no. 2, pp. 455-463, Feb. 2006. [22] S. Zhang, G. H. Huff, and J. T. Bernhard, “A pattern reconfigurable microstrip parasitic array,” IEEE Trans. Antennas Propag., vol. 52, no.10, pp. 2773-2776, Oct., 2004. [23] D. Parker and D. C. Zimmermann, “Phased arrays-Part II: implementations, applications, and future trends,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 688-698, Mar. 2002. [24] M. Bona, Manholm, J. P. Starski, and B. Svensson, “Low-loss compact Butler matrix for a microstrip antenna,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 2069-2075, Sep. 2002. [25] M. Nedil, T. A. Denidni, and L. Talbi, “Novel Butler matrix using CPW multilayer technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 499-507, Jan. 2006. [26] M. Barba, J. E. Page, J. A. Encinar, and J. R. Montejo-Garai, “A switchable multiple beam antenna for GSM-UMTS base stations in planar technology,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3087-3094, Nov. 2006. [27] G. Cerri, R. D. Leo, V. M. Primiani, C. Monteverde, and P. Russo, “Design and prototyping of a switching beam disc antenna for wideband communications,” IEEE Trans. Antennas Propag., vol. 54, no. 12, pp. 3721-3726, Dec. 2006. [28] N. Honma, T. Seki, K. Nishikawa, K. Tsunekawa, and K. Sawaya, “Compact six-sector antenna employing three intersecting dual-beam microstrip Yagi-Uda arrays with common director,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3055-3062, Nov. 2006. [29] M. Boti, L. Dussopt, and J. M. Laheurte, “Circularly polarized antenna with switchable polarization sense,” Electron. Lett., vol. 36, no. 18, pp. 1518-1519, Aug. 2000. [30] R. N. Simons, D. Chun, and L. P. B. Katehi, “Polarization reconfigurable patch antenna using microelectromechanical systems (MEMS) actutors,” in Proc. IEEE AP-S Int. Symp., San Antonio, TX, June 16-21, 2002, pp. 6-9. [31] M. Fries, M. Grani, and R. Vahldieck, “A reconfigurable slot antenna with switchable polarization,” Microwave and Wireless Components Lett., vol. 13, no. 11, pp. 490-492, Nov. 2003. [32] S. Nikolaou, R. Bairavasubramanian, C. Lugo, I. Carrasquillo, D. C. Thompson, G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, “Pattern and frequency reconfigurable annular slot antenna using PIN diodes,” IEEE Trans. Antennas Propag., vol. 54, no. 2, pp. 439-448, Feb. 2006. [33] E. Dreina, M. Pons, T. P. Vuong, and S. Tedjini, “Novel PIFA with polarization and frequency agility, “ in Proc. IEEE AP-S Int. Symp., Honolulu, HA, June 10-15, 2007, pp.4497-4500. [34] Z. Zhou, B. Vucetic, M. Dohler, and Y. Li, “MIMO systems with adaptive modulation,” IEEE Trans. Vehicular Tech., vol. 54, no. 5, pp. 1828-1842, Sep. 2005. [35] S. Catreux, V. Erceg, D. Gesbert and R. W. Heath, Jr., “Adaptive modulation and MIMO coding for broadband wireless data networks,” IEEE Communication Magazine, vol. 40, no. 6, pp. 108-115, June 2002. [36] B. A. Cetiner, E. Aksay, E. Sengul, and E. Ayanoglu, “A MIMO system with multifunctional reconfigurable antenna,” IEEE Antennas and Wireless Propag. Lett., vol.5, pp. 463-466, 2006. [37] G. H. Huff, J. Feng, S. Zhang, G. Cung, and J. T. Bernhard, “Directional reconfigurable antennas on laptop computers: Simulation, measurement and evaluation of candidate integration positions,” IEEE Trans. Antennas Propag., vol. 52, no. 12, pp. 3220-3227, Dec. 2004. [38] M. D. Migliore, D. Pinchera, and F. Schettino, “Improving channel capacity using adaptive MIMO antenna,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3481-3489, Nov. 2006. [39] J. D. Boerman, J. T. Bernhard, “Performance study of pattern reconfigurable antennas in MIMO communication systems,” IEEE Trans. Antennas Propag., vol. 56, no. 1, pp. 231-236, Jan. 2008. [40] Y. Yoshimura, “A microstrip line slot antenna,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp.760-762, Nov. 1972. [41] S. K. Sharma, L. Shafai, and N. Jacob, “Investigate of wide-band microstrip slot antenna,” IEEE Trans. Antennas and Propag., vol. 52, no. 3, pp. 865-872, Mar. 2004. [42] S. I. Latif, L. Shafai, and S. K. Sharma, “Bandwidth enhancement and size reduction of microstrip slot antennas,” IEEE Trans. Antennas and Propag., vol. 53, no. 3, pp. 994-1003, Mar. 2005. [43] A. P. Zhao and J. Rahola, “Quarter-wavelength wideband slot antenna for 3-5 GHz mobile applications,” IEEE Antennas and Wireless Propag. Lett., vol. 4, pp. 421-424, 2005. [44] W. S. Chen and K. Y. Ku, “Broadband design of a small non-symmetric ground λ/4 open slot antenna,” Microwave Journal, vol. 50, no.1, pp. 110-121, Jan. 2007. [45] C. A. Balanis, Antenna Theory Analysis and Design, John Wiley & Sons, ch. 12, 1997. [46] “Multi-band antenna design guidelines for mobile receive diversity,” Qualcomm, Mar. 2007. [47] ”Diversity antenna design guidelines,” Qualcomm, Jan. 2006. [48] S. Blanch, J. Romeu and I. Corbella, “Exact representation of antenna system diversity performance from input parameter description,” Electronics Lett. vol. 39, no. 9, pp.705-707. [49] C. G. Hynes, P. Hui, J. V. Wonterghem, and D. G. Michelson, “Cross-correlation and total efficiencies of two closely spaced sleeve dipole antennas,” in Proc. IEEE AP-S Int. Symp., Washington DC, July 9-14, 2005. [50] R. Garg, P. Bhartia, I. Bahlm and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, ch. 7, 2001. [51] R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill International Editions, ch. 3, 1993. [52] The PIN diode Circuit Designer’s Handbook, Microsemi-Watertown, ch.1, 1998. [53] D. M. Polar, Microwave Engineering, John Wiley & Sons, ch. 10, 1998. [54] R. E. Collin, Foundations for Microwave Engineering, McGraw-Hill, Inc., ch. 6, 1992. [55] G. M. Rebeiz, RF MES Theory, Design, and Technology, John Wiley & Sons, ch. 1, 2003. [56] K. L. Wong, Compact and Broadband Microstrip Antennas, Wiley-Interscience, Jan. 2002. [57] M. Karaboikis, C. Soras, G. Tsachtsiris, and V. Makios, “Compact dual-printed inverted-F antenna diversity systems for portable wireless devices,” IEEE Antennas and Wireless Propag. Lett., vol. 3, pp. 9-14, 2004. [58] Z. D. Liu, P. S. Hall, and D. Wake, “Dual-frequency planar inverted-F antenna,” IEEE Trans. Antennas Propag., vol. 45, no. 10, pp. 1451-1458, Oct. 1997. [59] K. L. Wong and C. H. Chang, “WLAN chip antenna mountable above the system ground plane of a mobile device,” IEEE Trans. Antennas Propag., vol. 53, no. 11, pp. 3496-3499, Nov. 2005. [60] K. L. Wong and C. H. Chang, “Surface-mountable EMC monopole chip antenna for WLAN operation,” IEEE Trans. Antennas Propag., vol. 54, no. 4, pp. 1100-1104, Apr. 2006. [61] M. Manteghi and Y. Rahmat-Samii, “Novel compact tri-band two-element and four-element MIMO antenna designs,” in Proc. IEEE AP-S Int. Symp., Albuquerque, New Mexico, July 9-14, 2006, pp. 4443-4446. [62] D. W. Browne, M. Manteghi, M. P. Fitz, Y. Rahmat-Samii, “Experimantals with compact antenna arrays for MIMO radio communications,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3239-3250, Nov. 2006. [63] Y. Ge, K. P. Esselle, and T. S. Brid, “Compact diversity antenna for wireless devices,” Electronics Lett., vol. 41, Jan. 2005. [64] K. S. Min, D. J. Kim, and M.S. Kim, “Multi-channel MIMO antenna design for WiBro/PCB band, “in Proc. IEEE AP-S Int. Symp., Honolulu, HA, June 10-15, 2007, pp. 1225-1228. [65] Y. Ding, Z. Du, and Z. Feng, “A novel dual-band printed diversity antenna for mobile terminals,“ IEEE Trans. Antennas Propag., vol. 55, no. 7, pp. 2088-2096, July 2007. [66] S. B. Yeap, X. Chen, J. A. Duput, and C. G. Parini, “Integrated diversity antenna for laptop and PDA terminal in a MIMO system,” IEE Proc.-Microw.. Antennas Propag., vol. 152, no. 6, pp. 495-504, Dec. 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37861 | - |
| dc.description.abstract | 此論文著重於利用L形槽線之組態可變的天線設計。首先提出一具可切換輻射場形的陣列天線,該陣列由四根L型的四分之一波長槽線天線所組成,並透過二極體控制每根天線動作與否。由於該槽型天線元件在槽線開口處具有較強的輻射,因此將四根天線的槽線開口分別朝向四個方向。當不同天線動作時,天線陣列的輻射場形可切換至特定的方向上。論文中實作一適用於無線區域網路之2.4-2.5 GHz天線來驗證設計的構想,該天線具有八種方向性和多個近似全向性的輻射場形,而其面積僅 。論文中亦詳細討論天線的相關係數、輻射特性等。相較於傳統的可切換輻射場形陣列天線,我們提出的天線具有精巧且低製作成本的特性,未來可應用至數位家電相關產品,以提升無線資料傳送的傳輸率和可靠性。
接下來提出一個可應用來設計場型、頻率或場型/頻率可調整的天線架構。該天線結構主要由L型槽線、二極體、電容器和偏壓電路組成。透過控制二極體動作與否來改變槽線周圍的感應電流分布,進而形成ㄧ輻射場型可調的天線。簡單地修改天線的參數,該架構可用來設計頻率可調整的天線。更進ㄧ步,若將電容器以可變電容器取代,並增加一些控制線路,該架構可以用來設計場型/頻率皆可調的新型天線。我們利用此架構實作多具天線來驗證設計的構想。提出的天線結構具有低製造成本、平面架構等特點,未來可應用於小型的手持設備如智慧型手機或筆記型電腦等產品。 | zh_TW |
| dc.description.abstract | This dissertation focuses on the design of compact reconfigurable antennas using L-shaped slots. A compact switched-beam antenna is proposed firstly. The antenna is composed of a four-element antenna array based on L-shaped quarter-wavelength slot antenna elements. Such an antenna element is a planar structure and presents a directional radiation pattern on the azimuthal plane. Its maximum radiation direction is toward near the direction of the open end of the slot. As a result, the open ends of the four slot antennas are arranged toward 0, pi/2 , pi, and pi*3/2, respectively. The statuses of these antennas are controlled by some diodes. Consequently, by carefully controlling the diodes, an antenna with several switchable patterns can be achieved. To prove the concept, a 2.4-2.5 GHz switched-beam antenna for WLAN applications is designed and implemented. Its size is 52mm in square. The antenna possesses eight directional patterns and many nearly omni-directional patterns on the azimuthal plane. The envelope correlations and the characteristics of the designed antenna are also discussed in the dissertation. Due to the compact size and low manufacture cost, such a design can be a promising solution for digital home applications to overcome multipath problems and increase the transmission data rate.
Next, a basic antenna structure to design pattern, frequency, and pattern/frequency reconfigurable antennas is proposed. The structure consists of an L-shaped slot, PIN diodes, lumped capacitors, and bias networks. The PIN diodes and the lumped capacitors located at specific positions are used to create short circuits across the slot. By carefully controlling these diodes, the induced current distribution around the slot can be changed, resulting in different antenna radiation patterns. Thus, a pattern reconfigurable antenna can be achieved. The proposed structure is then extended to design frequency and frequency/pattern reconfigurable antennas by simple modifications. A series of compact reconfigurable antennas based on the proposed structure is designed and implemented to prove the design concepts. Owing to the compact size, low manufacture cost and planar feature, the proposed structure can be applied to compact wireless devices such as smart phones and notebook computers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:47:51Z (GMT). No. of bitstreams: 1 ntu-97-D93942010-1.pdf: 5327856 bytes, checksum: 1df3a550208c3e8f27ec8e43a9a4186a (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書 iii
誌 謝 v 摘 要 vii Abstract ix Contents xi List of Figures xv List of Tables xix Chapter 1 Introduction 1 1.1 Motivations 1 1.2 Literature Survey 2 1.3 Contributions 5 1.4 Chapter Outlines 7 Chapter 2 Theoretical Background 9 2.1 Antenna Parameters 9 2.2 Slot Antennas 11 2.2.1 Half-Wavelength Slot Antennas 11 2.2.2 Quarter-Wavelength Slot Antennas 13 2.3 PIN Diodes 13 Chapter 3 Compact Switched-Beam Antenna Employing a Four-Element Slot Antenna Array for Digital Home Applications 19 3.1 Introduction 19 3.2 Antenna Design 20 3.2.1 Antenna Element 20 3.2.2 Antenna Description 21 3.2.3 Theory of Operation 22 3.3 Simulation and Measurement Results 23 3.4 Discussions 25 3.4.1 Envelope Correlations 25 3.4.2 Other Operation Modes 26 3.4.3 Pros and Cons 27 3.5 Summary 27 Chapter 4 Design of Reconfigurable Antennas Based on an L-shaped Slot and PIN Diodes for Compact Wireless Devices 39 4.1 Introduction 39 4.2 Antenna Structure 40 4.2.1 Antenna Description and Design Guideline 40 4.2.2 Pin Diode and Bias Network 41 4.2.3 Operation Mechanism 42 4.3 Pattern Reconfigurable Antenna Design 42 4.3.1 Simulation and Measurement Results 43 4.3.2 Envelope Correlations 44 4.3.3 Radiation Properties 45 4.3.4 MIMO Applications 45 4.4 Frequency Reconfigurable Antenna Design 47 4.5 Pattern/Frequency Reconfigurable Antenna Design 48 4.5.1 Tunable Resonant Frequency 48 4.5.2 Antenna Description and Design 49 4.6 Summary 50 Chapter 5 Conclusions 65 Appendix A. Multiple-Antenna Systems 67 A.1 Diversity Systems 67 A.2 Multiple-Input and Multiple-Output Systems 69 Appendix B. Slot Antennas with an Extended Ground for Multiple-Antenna Systems in Compact Wireless Devices 71 B.1 Introduction 71 B.2 Antenna Design 73 B.2.1 Antenna Description 73 B.2.2 Design Guidelines 73 B.3 Antenna Design and Implementation 74 B.3.1 Simulated and Measured Results 74 B.3.2 Multiple-Antenna Design 75 B.3.3 Comparison 75 B.3.4 Effects of the Height of the L-Shaped Metal Sheet 76 B.4 Summary 76 References 89 Publication List 95 | |
| dc.language.iso | en | |
| dc.subject | 組態可變天線 | zh_TW |
| dc.subject | 槽型天線 | zh_TW |
| dc.subject | slot antenna | en |
| dc.subject | reconfigurable antenna | en |
| dc.title | 利用L形槽線之組態可變天線設計 | zh_TW |
| dc.title | Designs of Reconfigurable Antennas Using L-Shaped Slots | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳俊雄,許博文,龐台銘,吳宗霖,林怡成,馬自莊 | |
| dc.subject.keyword | 槽型天線,組態可變天線, | zh_TW |
| dc.subject.keyword | slot antenna,reconfigurable antenna, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-06-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 5.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
