Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37836Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 李心予(Hsinyu Lee) | |
| dc.contributor.author | Chun-Hung Hsieh | en |
| dc.contributor.author | 謝俊弘 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:46:27Z | - |
| dc.date.available | 2013-07-07 | |
| dc.date.copyright | 2008-07-07 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-06-30 | |
| dc.identifier.citation | 1 Abbott, B. D., Schmid, J. E., Brown, J. G., Wood, C. R., White, R. D., Buckalew, A. R., and Held, G. A. (1999). RT-PCR quantification of AHR, ARNT, GR, and CYP1A1 mRNA in craniofacial tissues of embryonic mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin and hydrocortisone. Toxicological Sciences. 47 (1), 76-85.
2 Abdelrahim, M., Ariazi, E., Kim, K., Khan, S., Barhoumi, R., Burghardt, R., Liu, S. X., Hill, D., Finnell, R., Wlodarczyk, B., Jordan, V. C., and Safe, S. (2006). 3-Methylcholanthrene and other aryl hydrocarbon receptor agonists directly activate estrogen receptor alpha. Cancer Research. 66 (4), 2459-67. 3 Backlund, M., Johansson, I., Mkrtchian, S., and IngelmanSundberg, M. (1997). Signal transduction-mediated activation of the aryl hydrocarbon receptor in rat hepatoma H4IIE cells. Journal of Biological Chemistry. 272 (50), 31755-63. 4 Barbieri, S., Pirovano, C., Scarlato, G., Tarchini, P., Zappa, A., and Maranzana, M. (1988). Long-term effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the peripheral nervous system. Clinical and neurophysiological controlled study on subjects with chloracne from the Seveso area Neuroepidemiology. 7 (1), 29-37. 5 Bender, S. and Sadik, O. A. (1998). Direct electrochemical immunosensor for polychlorinated biphenyls. Environmental Science & Technology. 32 (6), 788-97. 6 Bock, K. W. (1994). Aryl hydrocarbon or dioxin receptor: biologic and toxic responses. Rev Physiol Biochem Pharmacol. 125, 1-42. 7 Bock, K. W. and Birbaumer, N. (1997). MCS (Multiple Chemical Sensitivity): Cooperation between toxicology and psychology may facilitate solutions of the problems: commentary. Human & Experimental Toxicology. 16 (9), 481-84. 8 Bock, K. W. and Kohle, C. (2005). Ah receptor- and TCDD-mediated liver tumor promotion: clonal selection and expansion of cells evading growth arrest and apoptosis - Commentary. Biochemical Pharmacology. 69 (10), 1403-08. 9 Bock, K. W. and Kohle, C. (2006). Ah receptor: Dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochemical Pharmacology. 72 (4), 393-404. 10 Bradlaw, J. A., Garthoff, L. H., Hurley, N. E., and Firestone, D. (1980). Comparative induction of aryl hydrocarbon hydroxylase activity in vitro by analogs of dibenzo-p-dioxin. Food and Cosmetics Toxicology. 18 (6), 627-35. 11 Carlson, D. B. and Perdew, G. H. (2002). A dynamic role for the Ah receptor in cell signaling? Insights from a diverse group of ah receptor interacting proteins. Journal of Biochemical and Molecular Toxicology. 16 (6), 317-25. 12 Carrier, F., Owens, R. A., Nebert, D. W., and Puga, A. (1992). Dioxin-dependent activation of murine CYP1A-1 gene-transcription requires protein kinase-C-dependent phosphorylation. Molecular and Cellular Biology. 12 (4), 1856-63. 13 Cheung-Flynn, J., Roberts, P. J., Riggs, D. L., and Smith, D. F. (2003). C-terminal sequences outside the tetratricopeptide repeat domain of FKBP51 and FKBP52 cause differential binding to hsp90. Journal of Biological Chemistry. 278 (19), 17388-94. 14 Cook, J. C., Gaido, K. W., and Greenlee, W. F. (1987). Ah receptor: relevance of mechanistic studies to human risk assessment. Environmental Health Perspectives. 76, 71-77. 15 Crews, S. T. and Fan, C. M. (1999). Remembrance of things PAS: regulation of development by bHLH-PAS proteins. Current Opinion in Genetics & Development. 9 (5), 580-87. 16 Day, R. N., Periasamy, A., and Schaufele, F. (2001). Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods. 25 (1), 4-18. 17 Denison, M., Brouwer, A., and Clark, G., (US Patent 5,854,010, 1998). 18 Elfouly, M. H., Richter, C., Giesy, J. P., and Denison, M. S. (1994). Production of a novel recombinant cell-line for use as a bioassay system for detection of 2,3,7,8-Tetrachlorodibenzo-p-dioxin-like chemicals. Environmental Toxicology and Chemistry. 13 (10), 1581-88. 19 Eriksson, M., Hardell, L., and Adami, H. O. (1990). Exposure to dioxins as a risk factor for soft tissue sarcoma: A population - based case-control study. Journal of the National Cancer Institute. 82 (6), 486-90. 20 Fernandezsalguero, P., Pineau, T., Hilbert, D. M., McPhail, T., Lee, S. S. T., Kimura, S., Nebert, D. W., Rudikoff, S., Ward, J. M., and Gonzalez, F. J. (1995). Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science. 268 (5211), 722-26. 21 Fingerhut, M. A., Halperin, W. E., Honchar, P. A., Smith, A. B., Groth, D. H., and Russell, W. O. (1984). An evaluation of reports of dioxin exposure and soft tissue sarcoma pathology among chemical workers in the United States. Scandinavian Journal of Work Environment & Health. 10 (5), 299-303. 22 Forster, T. (1948). *Zwischenmolekulare energiewanderung und fluoreszenz. Annalen Der Physik. 2 (1-2), 55-75. 23 Gordon, G. W., Berry, G., Liang, X. H., Levine, B., and Herman, B. (1998). Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophysical Journal. 74 (5), 2702-13. 24 Gregoraszczuk, E. L. (2002). Dioxin exposure and porcine reproductive hormonal activity. Cad Saude Publica. 18 (2), 453-62. 25 Gu, Y. Z., Hogenesch, J. B., and Bradfield, C. A. (2000). The PAS superfamily: Sensors of environmental and developmental signals. Annual Review of Pharmacology and Toxicology. 40, 519-61. 26 Hankinson, O. (1995). The aryl hydrocarbon receptor complex. Annual Review of Pharmacology and Toxicology. 35, 307-40. 27 Heid, S. E., Pollenz, R. S., and Swanson, H. I. (2000). Role of heat shock protein 90 dissociation in mediating agonist-induced activation of the aryl hydrocarbon receptor. Molecular Pharmacology. 57 (1), 82-92. 28 Housley, P. R., Sanchez, E. R., Danielsen, M., Ringold, G. M., and Pratt, W. B. (1990). Evidence that the conserved region in the steroid binding domain of the glucocorticoid receptor is required for both optimal binding of hsp90 and protection from proteolytic cleavage - a 2-site model for Hsp90 binding to the steroid binding domain. Journal of Biological Chemistry. 265 (22), 12778-81. 29 Hu, K. K. and Bunce, N. J. (1999). Metabolism of polychlorinated dibenzo-p-dioxins and related dioxin-like compounds. Journal of Toxicology and Environmental Health-Part B-Critical Reviews. 2 (2), 183-210. 30 Huang, Y.W., Lee, W.S., Chang-Chien, G.P., Lin, C.I., Kao, C.Y., and Lee, H. (2004). Establishment of cellular detection systems for dioxin-like compounds. Chinese Bioscience. 47 (1), 1-18. 31 Joung, K. E., Chung, Y. H., and Sheen, Y. Y. (2007). DRE-CALUX bioassay in comparison with HRGC/MS for measurement of toxic equivalence in environmental samples. Science of the Total Environment. 372 (2-3), 657-67. 32 Kang, K. I., Devin, J., Cadepond, F., Jibard, N., Guiochonmantel, A., Baulieu, E. E., and Catelli, M. G. (1994). In-vivo functional protein-protein interaction - nuclear targeted hsp90 shifts cytoplasmic steroid-receptor mutants into the nucleus. Proceedings of the National Academy of Sciences of the United States of America. 91 (1), 340-44. 33 Khan, S., Barhoumi, R., Burghardt, R., Liu, S. X., Kim, K., and Safe, S. (2006). Molecular mechanism of inhibitory aryl hydrocarbon receptor-estrogen receptor/Sp1 cross talk in breast cancer cells. Molecular Endocrinology. 20 (9), 2199-214. 34 Kobayashi, A., Sogawa, K., and FujiiKuriyama, Y. (1996). Cooperative interaction between AhR center dot Arnt and Sp1 for the drug-inducible expression of CYP1A1 gene. Journal of Biological Chemistry. 271 (21), 12310-16. 35 Larsen, J. C., Farland, W., and Winters, D. (2000). Current risk assessment approaches in different countries. Food Additives and Contaminants. 17 (4), 359-69. 36 Lees, M. J. and Whitelaw, M. L. (2002). Effect of ARA9 on dioxin receptor mediated transcription. Toxicology. 181, 143-46. 37 Levine, S. L. and Perdew, G. H. (2001). Aryl hydrocarbon receptor (AhR)/AhR nuclear translocator (ARNT) activity is unaltered by phosphorylation of a periodicity/ARNT/single-minded (PAS)-region serine residue. Molecular Pharmacology. 59 (3), 557-66. 38 Ma, Q. and Baldwin, K. T. (2000). 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced degradation of aryl hydrocarbon receptor (AhR) by the ubiquitin-proteasome pathway - Role of the transcription activaton and DNA binding of AhR. Journal of Biological Chemistry. 275 (12), 8432-38. 39 Majoul, I., Straub, M., Duden, R., Hell, S. W., and Soling, H. D. (2002). Fluorescence resonance energy transfer analysis of protein-protein interactions in single living cells by multifocal multiphoton microscopy. J Biotechnol. 82 (3), 267-77. 40 McGregor, D. B., Partensky, C., Wilbourn, J., and Rice, J. M. (1998). An IARC evaluation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans as risk factors in human carcinogenesis. Environmental Health Perspectives. 106, 755-60. 41 Minami, Y., Kawasaki, H., Miyata, Y., Suzuki, K., and Yahara, I. (1991). Analysis of native forms and isoform compositions of the mouse 90-kda heat-shock protein, hsp90. Journal of Biological Chemistry. 266 (16), 10099-103. 42 Murk, A. J., Legler, J., Denison, M. S., Giesy, J. P., vandeGuchte, C., and Brouwer, A. (1996). Chemical-activated luciferase gene expression (CALUX): A novel in vitro bioassay for Ah receptor active compounds in sediments and pore water. Fundamental and Applied Toxicology. 33 (1), 149-60. 43 Nadeau, K., Das, A., and Walsh, C. T. (1993). Hsp90 chaperonins possess ATPase activity and bind heat-shock transcription factors and peptidyl prolyl isomerases. Journal of Biological Chemistry. 268 (2), 1479-87. 44 Nebert, D. W., Puga, A., and Vasiliou, V. (1993). Role of the Ah receptor and the dioxin-inducible [Ah] gene battery in toxicity, cancer, and signal-transduction. Annals of the New York Academy of Sciences. 685, 624-40. 45 Okuyama, M., Kobayashi, N., Takeda, W., Anjo, T., Matsuki, Y., Goto, J., Kambegawa, A., and Hod, S. (2004). Enzyme-linked immunosorbent assay for monitoring toxic dioxin congeners in milk based on a newly generated monoclonal anti-dioxin antibody. Analytical Chemistry. 76 (7), 1948-56. 46 Parzefall, W. (2002). Risk assessment of dioxin contamination in human food. Food and Chemical Toxicology. 40 (8), 1185-89. 47 Patterson, G., Day, R. N., and Piston, D. (2001). Fluorescent protein spectra. Journal of Cell Science. 114 (5), 837-38. 48 Perdew, G. H., Hord, N., Hollenback, C. E., and Welsh, M. J. (1993). Localization and characterization of the 86-Kda and 84-Kda heat-shock proteins in Hepa 1c1c7 cells. Experimental Cell Research. 209 (2), 350-56. 49 Pohl, H. R., Llados, F., Ingerman, L., Cunningham, P., Raymer, J. H., Wall, C., Gasiewicz, T., and De Rosa, C. T. (2000). ATSDR evaluation of health effects of chemicals. VII: Chlorinated dibenzo-p-dioxins. Toxicology and Industrial Health. 16 (3-5), 85-+. 50 Postlind, H., Vu, T. P., Tukey, R. H., and Quattrochi, L. C. (1993). Response of human CYP1-luciferase plasmids to 2,3,7,8-tetrachlorodibenzo-p-dioxin and polycyclic aromatic hydrocarbons Toxicology and Applied Pharmacology. 118 (2), 255-62. 51 Pratt, W. B. and Toft, D. O. (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Experimental Biology and Medicine. 228 (2), 111-33. 52 Probst, M. R., Reiszporszasz, S., Agbunag, R. V., Ong, M. S., and Hankinson, O. (1993). Role of the aryl hydrocarbon receptor nuclear translocator protein in aryl hydrocarbon (dioxin) receptor action. Molecular Pharmacology. 44 (3), 511-18. 53 Reiszporszasz, S., Probst, M. R., Fukunaga, B. N., and Hankinson, O. (1994). Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Molecular and Cellular Biology. 14 (9), 6075-86. 54 Rideout, K. and Teschke, K. (2004). Potential for increased human foodborne exposure to PCDD/F when recycling sewage sludge on agricultural land. Environmental Health Perspectives. 112 (9), 959-69. 55 Roberts, B. J. and Whitelaw, M. L. (1999). Degradation of the basic helix-loop-helix/Per-ARNT-Sim homology domain dioxin receptor via the ubiquitin/proteasome pathway. Journal of Biological Chemistry. 274 (51), 36351-56. 56 Rowlands, J. C. and Gustafsson, J. A. (1997). Aryl hydrocarbon receptor-mediated signal transduction. Critical Reviews in Toxicology. 27 (2), 109-34. 57 Safe, S. (1990). Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Critical Reviews in Toxicology. 21 (1), 51-88. 58 Sanderson, J. T., Aarts, Jmmjg, Brouwer, A., Froese, K. L., Denison, M. S., and Giesy, J. P. (1996). Comparison of Ah receptor-mediated luciferase and ethoxyresorufin-O-deethylase induction in H4IIE cells: Implications for their use as bioanalytical tools for the detection of polyhalogenated aromatic hydrocarbons. Toxicology and Applied Pharmacology. 137 (2), 316-25. 59 Schmidt, J. V. and Bradfield, C. A. (1996). Ah receptor signaling pathways. Annual Review of Cell and Developmental Biology. 12, 55-89. 60 Sogawa, K. and FujiiKuriyama, Y. (1997). Ah receptor, a novel ligand-activated transcription factor. Journal of Biochemistry. 122 (6), 1075-79. 61 Stanker, L. H., Watkins, B., Rogers, N., and Vanderlaan, M. (1987). Monoclonal antibodies for dioxin: antibody characterization and assay development. Toxicology. 45 (3), 229-43. 62 Sugawara, Y., Gee, S. J., Sanborn, J. R., Gilman, S. D., and Hammock, B. D. (1998). Development of a highly sensitive enzyme-linked immunosorbent assay based on polyclonal antibodies for the detection of polychlorinated dibenzo-p-dioxins. Analytical Chemistry. 70 (6), 1092-99. 63 Szurdoki, F., Jaeger, L., Harris, A., Kido, H., Wengatz, I., Goodrow, M. H., Szekacs, A., Wortberg, M., Zheng, J., Stoutamire, D. W., Sanborn, J. R., Gillman, S. D., Jones, A. D., Gee, S. J., Choudary, P. V., and Hammock, B. D. (1996). Rapid assays for environmental and biological monitoring. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes. 31 (3), 451-58. 64 Tondeur, Y., Niederhut, W. N., Campana, J. E., and Missler, S. R. (1987). A hybrid HRGC/MS/MS method for the characterization of tetrachlorinated-p-dioxins in environmental samples. Biomedical and Environmental Mass Spectrometry. 14 (8), 449-56. 65 Tsai, J. C. and Perdew, G. H. (1997). Ah receptor nuclear translocator protein heterogeneity is altered after heterodimerization with the Ah receptor. Biochemistry. 36 (29), 9066-72. 66 Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., and Peterson, R. E. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences. 93 (2), 223-41. 67 Wang, G. L., Jiang, B. H., Rue, E. A., and Semenza, G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America. 92 (12), 5510-14. 68 Wilson, C. L. and Safe, S. (1998). Mechanisms of ligand-induced aryl hydrocarbon receptor-mediated biochemical and toxic responses. Toxicologic Pathology. 26 (5), 657-71. 69 Wouters, F. S., Verveer, P. J., and Bastiaens, P. I. H. (2001). Imaging biochemistry inside cells. Trends in Cell Biology. 11 (5), 203-11. 70 Yahara, I., Minami, Y., and Miyata, Y. (1998). The 90-kDa stress protein, Hsp90, is a novel molecular chaperone. Stress of Life. 851, 54-60. 71 Youvan, D. C., Silva, C. M., Bylina, E. J., Coleman, W. J., Dilworth, M. R., and Yang, M. M. (1997). Calibration of fluorescence resonance energy transfer in microscopy using genetically engineered GFP derivatives on nickel chelating beads. Biotechnology. 3, 1-18. 72 Zajicek, J. L., Tillitt, D. E., Huckins, J. N., Petty, J. D., Potts, M. E., and Nardone, D. A. (1996). Application of enzyme-linked immunosorbent assay for measurement of polychlorinated biphenyls from hydrophobic solutions - Extracts of fish and dialysates of semipermeable membrane devices. Environmental Immunochemical Methods. 646, 307-25. 73 Zhang, Z. R., Xu, S. Q., Zhou, Y. K., Xu, Y. J., Liu, Z. W., Cai, X. K., and Tan, X. L. (2002). Improvement of chemically-activated luciferase gene expression bioassay for detection of dioxin-like chemicals. Biomedical and Environmental Sciences. 15 (1), 58-66. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37836 | - |
| dc.description.abstract | 戴奧辛(dioxin)是一群含多氯聯苯化合物之總稱,由於具有高度脂溶性,多經由食物鏈積存於生物體內,影響賀爾蒙之調控,甚至造成細胞癌化,其中2,3,7,8-TCDD(2,3,7,8-tetrachlorodibenzo-p-dioxin)是目前所知毒性最強之污染物。目前我國檢測戴奧辛大多使用氣相層析-高解析度質譜儀分析(GC/HRMS)等化學方法,然而隨著戴奧辛在生物體內毒理機制了解與日俱增,先後有ELISA、CALUX等生物檢測戴奧辛方法,由於具備快速、便宜、操作簡單等優勢,目前應用生物檢測方法來篩檢戴奧辛樣品逐漸成為主流。因此,本研究根據細胞辨識戴奧辛等環境污染物反應,分別以小鼠戴奧辛受器mAHR (mouse aryl hydrocarbon receptor)-小鼠熱休克蛋白90 mHSP90 (mouse heat shock protein 90)組合與人類戴奧辛受器hAHR (human aryl hydrocarbon receptor)-人類戴奧辛受器核轉置蛋白hARNT(human AHR nuclear translocator)組合,藉由螢光共振能量轉移技術(Fluorescence Resonance Energy Transfer,FRET)訊號偵測戴奧辛污染程度,在時間及成本上占有相對優勢,且較能真實反應環境汙染因子對生物體的毒害程度。實驗設計上,分別建構mAHR-CFP與mHSP90-YFP以及hAHR-CFP與hARNT-YFP的表達質體,送入大鼠肝癌H4IIEC3細胞中,結果發現螢光共振能量轉移訊號與戴奧辛污染程度有依賴關係,在mAHR-CFP與mHSP90-YFP組合部分,隨著不同劑量之戴奧辛而訊號下降;在hAHR-CFP與hARNT-YFP組合部分,則隨著不同劑量而訊號上昇。根據研究結果,未來具有作為輔助戴奧辛等環境污染物大量篩選檢測工具之可行性。 | zh_TW |
| dc.description.abstract | Dioxins comprise a group of compounds which contain a double aromatic ring-like structure. They are among the most prevalent and toxic environmental pollutants. Accumulation of dioxins in human tissues poses a potential threat to human health. Currently, analytical chemical procedures dominate dioxin-detection protocols. In this study, we established 2 set of fluorescence resonance energy transfer (FRET)-based dioxin-detection bioassays. We generated plasmids encoding fusion proteins of mAHR (Mouse aryl hydrocarbon receptor) and mHSP90 (Mouse heat shock protein 90) with CFP and YFP , and the other set by the same method, We generated plasmids encoding fusion proteins of hAHR (Human aryl hydrocarbon receptor) and hARNT (Human AHR nuclear translocator) with CFP and YFP, respectively. Constructs were transiently co-transfected into rat hepatoma cell line, H4IIEC3 cells. Our results showed that FRET signals were detected in mAHR-CFP and mHSP90-YFP co-transfected H4IIEC3 cells. Dioxin treatments down-regulated FRET signals in these transfected cells in a dose-dependent manner. On the other hand, no FRET signals were detected in hAHR-CFP and hARNT-YFP-transfected H4IIEC3 cells. In contrast, dioxin treatments up-regulated FRET signals in these transfected cells in a dose-dependent manner. This work highlighted the potential of using FRET technique in the detection of dioxin-like compounds. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:46:27Z (GMT). No. of bitstreams: 1 ntu-97-R95b41004-1.pdf: 1588409 bytes, checksum: 81b9984355c9233da499a944f8b30247 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………..…………...… I
誌謝……………………………………………………………………......…….. II 中文摘要……………………………………………………………………….... III Abstract…………………………………………………………………………….. IV 第一章 前言……………………………………………………...……………… 1 1.1 戴奧辛簡介………………………………………..……………………. 1 1.2 戴奧辛於細胞的作用機制………………………..……………………. 5 1.3 戴奧辛的檢測方法…………………………………..…………………. 7 1.4螢光共振能量轉移 (FRET)…………………………….……………… 10 第二章 材料與方法………………………………………………………..……. 14 2. 1 試劑…………………………………………………………….…….…. 14 2. 2 細胞培養…………………………………………………….………….. 14 2. 3 質體建構…………………………………………………….………….. 14 2. 4 細胞轉殖………………………………………………….…………….. 16 2. 5 細胞株選殖……………………………………………….…………….. 16 2. 6 戴奧辛配製…………………………………………….……………….. 16 2. 7 螢光共振能量轉移量化………………………………….…………….. 16 2.8 共免疫沉澱法與西方墨點法分析…………………………………….. 17 2.9 建立基因轉殖雞……………………………………………………….. 18 2. 10 統計分析…………………………………………………………….. 18 第三章 實驗設計……………………………………………………………….. 19 3. 1戴奧辛in vivo生物檢測系統之建立………………………………….. 19 3.2 戴奧辛 in vitro生物檢測系統之建立………………………………… 27 第四章 結果…………………………………………………………………….. 29 第五章 討論…………………………………………………………………….. 34 第六章 附圖…………………………………………………………………….. 41 圖一. 戴奧辛結構及2,3,7,8-TCDD……………………………………....... 41 圖二. 螢光共振能量轉移原理……...………………………………............ 42 圖三. 以AHR與HSP90蛋白分子作為戴奧辛生物檢測系統 實驗原理闡述……………………………………………………….. 43 圖四. mAHR與mHSP90戴奧辛生物檢測系統之實驗設計……………... 44 圖五. 建構mAHR-CFP與mHSP90-YFP質體…………………………... 45 圖六. 戴奧辛促使mAHR轉進核內現象…………………………………. 46 圖七. 戴奧辛誘導mAHR-CFP與mHSP90-YFP螢光共振能量轉移 訊號強度下降…………………………………………….…………. 47 圖八. 戴奧辛誘導mAHR-CFP與mHSP90-YFP螢光共振能量轉移 訊號強度下降有劑量依賴的關係………………………….……….. 48 圖九. 戴奧辛誘導mAHR-CFP與mHSP90-YFP螢光共振能量轉移 訊號強度下降有時間依賴的關係…………………………….…..… 49 圖十. 以AHR與ARNT蛋白分子作為戴奧辛生物檢測系統 實驗原理闡述……………………………………………………….. 50 圖十一. hAHR與hARNT建構之生物檢測系統實驗設計………….....…. 51 圖十二. 建構hAHR-CFP與hARNT-YFP質體…………………………... 52 圖十三. 戴奧辛誘導hAHR-CFP與hARNT-YFP螢光共振能量轉移 訊號上昇且促使hAHR-CFP轉進核內現象…………….…...…. 53 圖十四. 戴奧辛誘導hAHR-CFP與hARNT-YFP螢光共振能量轉移 訊號強度上昇有劑量依賴的關係…….……………….……...…. 54 圖十五. 以螢光共振能量轉移技術作為戴奧辛生物檢測模式之結論...… 55 圖十六. 挑選hAHR-CFP與hARNT-YFP穩定細胞株………………....... 56 圖十七. AHR-HSP90蛋白分子於in vitro相互作用之實驗設計…………. 57圖十八. 應用共免疫沉澱實驗探討AHR-HSP90於in vitro相互作用 的可行性…………………………………………………..…..…... 58 圖十九. 建立hAHR/hARNT基因轉殖雞………………………….……… 59 第七章 附表……………………………………………………………………... 60 附表一. 戴奧辛毒性當量因子………………………………………..…….. 60 附表二. 戴奧辛生物檢測模式比較分析……………………………..…….. 61 附表三. 螢光蛋白分子光譜特性……………………………………..…….. 62 參考文獻…………………………………………………………………….…….. 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 戴奧辛 | zh_TW |
| dc.subject | 螢光共振能量轉移 | zh_TW |
| dc.subject | 戴奧辛生物檢測方法 | zh_TW |
| dc.subject | Dioxin | en |
| dc.subject | Fluorescence resonance energy transfer | en |
| dc.subject | Dioxin bioassay | en |
| dc.title | 以螢光共振能量轉移技術作為戴奧辛生物檢測模式之研究 | zh_TW |
| dc.title | Establishment of a Fluorescence Resonance Energy Transfer-based bioassay for detecting dioxin-like compounds | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 潘建源(Chien-Yuan Pan),張簡國平(Gou-Ping Chang-Chien),張文興(Wen-Hsing Chang) | |
| dc.subject.keyword | 戴奧辛,螢光共振能量轉移,戴奧辛生物檢測方法, | zh_TW |
| dc.subject.keyword | Dioxin,Fluorescence resonance energy transfer,Dioxin bioassay, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-01 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| Appears in Collections: | 動物學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-97-1.pdf Restricted Access | 1.55 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
