請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3782完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳炳宇(Bing-Yu Chen) | |
| dc.contributor.author | Jia-Yu Tsai | en |
| dc.contributor.author | 蔡佳昱 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:36:44Z | - |
| dc.date.available | 2018-03-02 | |
| dc.date.available | 2021-05-13T08:36:44Z | - |
| dc.date.copyright | 2018-03-02 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2018-01-23 | |
| dc.identifier.citation | 3dsystems. http://www.3dsystems.com. Accessed: 2016-06-01.
Tutorial: How to hollow objects for 3d printing. http://www.shapeways.com/tutorials/creating-hollow-objects. Accessed: 2010-06-01. B. Bickel, M. B¨acher, M. A. Otaduy, H. R. Lee, H. Pfister, M. Gross, and W. Matusik. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph., 29(4):63:1–63:10, July 2010. D. Chen, D. I. W. Levin, P. Didyk, P. Sitthi-Amorn, and W. Matusik. Spec2fab: A reducertuner model for translating specifications to 3d prints. ACM Trans. Graph., 32(4):135:1–135:10, July 2013. M. Haˇsan, M. Fuchs, W. Matusik, H. Pfister, and S. Rusinkiewicz. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph., 29(4):61:1–61:10, July 2010. L. Luo, I. Baran, S. Rusinkiewicz, and W. Matusik. Chopper: Partitioning models into 3d-printable parts. ACM Trans. Graph., 31(6):129:1–129:9, Nov. 2012. S. Mueller, S. Im, S. Gurevich, A. Teibrich, L. Pfisterer, F. Guimbreti`ere, and P. Baudisch. Wireprint: 3d printed previews for fast prototyping. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, UIST ’14, pages 273–280, New York, NY, USA, 2014. ACM. R. Pr´evost, E. Whiting, S. Lefebvre, and O. Sorkine-Hornung. Make it stand: Balancing shapes for 3d fabrication. ACM Trans. Graph., 32(4):81:1–81:10, July 2013. O. Stava, J. Vanek, B. Benes, N. Carr, and R. Mˇech. Stress relief: Improving structural strength of 3d printable objects. ACM Trans. Graph., 31(4):48:1–48:11, July 2012. J. Vanek, J. A. G. Galicia, B. Benes, R. Mech, N. Carr, O. Stava, and G. S. Miller. Pack-Merger: A 3D Print Volume Optimizer. Computer Graphics Forum, 2012. W. Wang, T. Y. Wang, Z. Yang, L. Liu, X. Tong, W. Tong, J. Deng, F. Chen, and X. Liu. Cost-effective printing of 3d objects with skin-frame structures. ACM Trans. Graph., 32(6):177:1–177:10, Nov. 2013. Q. Zhou, J. Panetta, and D. Zorin. Worst-case structural analysis. ACM Trans. Graph., 32(4):137:1–137:12, July 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3782 | - |
| dc.description.abstract | 積層製造又稱3D列印(3D printing),採用逐層疊加的製造方法,近年來3D列印技術被快速開發,此類型技術大大簡化了對複雜零件的加工製程。其中以熔融擠製成形的加工技術最為簡單、設計最容易,因此坊間許多自組機臺,也是現在桌上型3D列印機中使用最多的技術。我們提出一個新的3D列印方法,能夠比現有方法節省材料並且縮短列印時間,使得3D列印更加經濟。另外,本研究在3D列印的材料外還加入了使用Zometool的複合結構,使得3D列印的結構支撐上可以用一個新的方法代替,同時兼顧經濟,又能有非常良好的抗壓能力。第三個重要突破是,結合Zometool和3D列印,使得超大型的3D列印成品可以透過家用型的打印機,在省時、省材料的情況下實現,並且兼具堅固、耐壓等優點。 | zh_TW |
| dc.description.abstract | Additive manufacturing(AM) produces parts by adding material in layers, which significantly simplifies the process of producing complex 3D objects. Recently, AM technologies are well developed and fused deposition modeling is the simplest technique and is widely adopted to develop so-called 3D printers.
3D printers have become popular in recent years and enable fabrication of custom objects for home users. However, the cost of the material used in printing remains high and one of the remaining obstacles to wide-scale adoption is that the object to be printed must fit into the working volume of the 3D printers. In this paper, we present an new solution to design a complex Zometool structure for the purpose of reducing the material cost in printing a given 3D object and to decompose a large 3D object into smaller parts so that each part fits into the printing volume. These object parts can then be assembled with Zometool to form the original object. The complex Zometool structure is designed by an optimization scheme which significantly reduces material volume and is guaranteed to be physically solid, geometrically consistent, and printable. Furthermore, the formation of Zometool struts is duplicated repeatedly in the same pattern which is structurally sound. We formulate it as an iterative searching algorithm to find a compromise solution. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:36:44Z (GMT). No. of bitstreams: 1 ntu-105-R03725048-1.pdf: 23549065 bytes, checksum: 54965c103c0049cbf1fdd009fde8fbba (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii Abstract iii List of Figures vi List of Tables ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Larger, Better, Faster, Stronger 2 1.3 Contribution 3 Chapter 2 Related Work 5 2.1 Structural Soundness 5 2.2 Printing Time Saving 6 2.3 Large Scale Model Printing 6 Chapter 3 Overview 7 Chapter 4 Zometool Structure and Segment Generator 11 4.1 preprocessing 11 4.2 interior structure Generation 11 4.2.1 Zometool-formed tetrahedron 12 4.2.2 Propagate and pile up tetrahedrons 13 4.2.3 Eliminate unnecessary tetrahedrons 14 4.2.4 Articulation Points Detection 15 4.3 Model to tetrahedron connection construction 16 4.3.1 Different types of connection 16 4.3.2 Selection of different types 18 4.4 Additional Zometool struts construction 19 4.4.1 Model surface segmentation 20 4.4.2 Decision of whether to construct additional Zometool struts 21 4.4.3 Additional Zometool member Growing Patterns 21 4.5 Model to additional Zometool strut connection construction 24 4.5.1 Different types of connection 24 4.5.2 Selection of different types 25 4.6 Zometool strut force analysis 26 4.6.1 Prior knowledge 26 4.6.2 The direct stiffness method 27 4.7 Model to Zometool Connector Generation 28 4.8 Between-Segment Split Surface Generation 29 4.8.1 Splitting Segments 29 4.8.2 Generate Split Surface 29 4.9 Post Processing 30 Chapter 5 Implementation and Results 31 5.1 Printed examples 31 5.2 comparison 33 Chapter 6 conclusion, limitation and future work 40 6.1 Conclusion 40 6.2 Limitation 40 6.3 Future Work 41 Bibliography 42 | |
| dc.language.iso | en | |
| dc.subject | 3D模型分割 | zh_TW |
| dc.subject | 3D列印 | zh_TW |
| dc.subject | 非流型結構 | zh_TW |
| dc.subject | 大型原型生成 | zh_TW |
| dc.subject | 龍圖兒結構 | zh_TW |
| dc.subject | 3D model segmentation | en |
| dc.subject | 3D printing | en |
| dc.subject | large scale prototyping | en |
| dc.subject | Zometool structure | en |
| dc.subject | Nonmanifold structure | en |
| dc.title | 大型3D列印結合龍圖兒內結構 | zh_TW |
| dc.title | Large-scale 3D-Printing with Zometool Interior Structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴佑吉(Yu-Chi Lai),紀明德(Ming-Te Chi) | |
| dc.subject.keyword | 3D列印,大型原型生成,龍圖兒結構,非流型結構,3D模型分割, | zh_TW |
| dc.subject.keyword | 3D printing,large scale prototyping,Zometool structure,Nonmanifold structure,3D model segmentation, | en |
| dc.relation.page | 43 | |
| dc.identifier.doi | 10.6342/NTU201800118 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-01-24 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
