Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37828
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王凡
dc.contributor.authorLi-Wei Yaoen
dc.contributor.author姚力瑋zh_TW
dc.date.accessioned2021-06-13T15:45:58Z-
dc.date.available2011-08-15
dc.date.copyright2011-08-15
dc.date.issued2011
dc.date.submitted2011-08-10
dc.identifier.citation[1] K. Aggarwal, Y. Singh, A. Kaur, and O. Sangwan. A neural net based approach to test oracle. ACM
Software Engineering Notes, 29(4), May 2004.
[2] F. Belina and D. Hogrefe. The ccitt-specification and description language sdl. Computer Networks
and ISDN Systems, 16(4):311–341, March 1989.
[3] G. Booch, I. Jacobson, and J. Rumbaugh. OMG Unified Modeling Language Specification, Version
1.3, First Edition. Object Management Group (OMG), March 2000.
[4] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In Workshop on Logic of Programs, volume LNCS 131. Springer-
Verlag, 1981.
[5] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20, 1995.
[6] M. Dalheimer. Programming with Qt (2nd ed.). O’Reilly Media, January 2002.
[7] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the second order information for
training svm. Journal of Machine Learning Research, 6:1889–1918, 2005.
[8] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine
Learning Research, 3:1157–1182, 2003.
[9] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.
[10] C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector machines. IEEE
Transactions on Neural Networks, 2002.
[11] A. Kumar and J. St.Clair. Cunit: A unit testing framework for c, 2004. http://cunit.sourceforge.net.
[12] A. M. Memon, M. E. Pollack, and M. L. Soffa. Automated test oracles for guis. ACM SIGSOFT
Software Engineering Notes, 25(6), Nov. 2000. Also in Proceedings of the 8th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ACM FSE).
[13] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[14] Peters and Parnas. Generating a test oracle from program documentation. In ACM International
Symposium on Software Testing and Analysis (ISSTA). ACM, 1994.
[15] A. Pnueli. The temporal logic of programs. In 18th annual IEEE-CS Symposium on Foundations
of Computer Science, pages 45–57, 1977.
[16] S. R. Shahamiri, W. M. N. W. Kadir, and S. Z. Mohd-Hashim. A comparative study on automated
software test oracle methods. In Fourth International Conference on Software Engineering
Advances (ICSEA). IEEE Computer Society, 2009.
[17] P. Tahchiev, F. Leme, V. Massol, and V. Massol. JUnit in Action, Second Edition. Manning, 2011.
[18] M. Vanmali, M. Last, and A. Kandel. Using a neural network in the software testing process.
International Journal of Intelligent Ssytems, 17:45–62, 2002.
[19] V. N. Vapnik. Estimation of dependencies based on empirical data. Springer Verlag, 1982.
[20] V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag, 1995.
[21] F. Wang, J.-H. Wu, C.-H. Huang, and K.-H. Chang. Evolving a test oracle in black-box testing.
In 14th International Conference on Fundamental Approaches to Software Engineering (FASE),
volume LNCS 6603. Springer-Verlag, March/April 2011.
[22] Y.-C. F. Wang and D. Casasent. A hierarchical classifier using new support vector machine. In
ICDAR, pages 851–855. IEEE Computer Society, 2005.
[23] C. Willcock, T. Deis, S. Tobies, S. Keil, F. Engler, and S. Schulz. An Introduction to TTCN-3.
Wiley, 2005.
[24] M. Ye, B. Feng, L. Zhu, and Y. Lin. Automated test oracle based on neural networks. In 5th
International Conference on Cognitive Infomatics (ICCI). IEEE, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37828-
dc.description.abstractA test oracle is a mechanism that decides whether an SUT (software under test) fails or passes a test case. Modern software IPs (intellectual properties) usually have a long life cycle and are subject to ever-changing requirements and operating environments. Especially, programs like operating systems, embedded systems, servers, etc. may never terminate and their test oracles need to monitor execution traces of unbounded lengths in order to issue correct test verdicts. We investigate how to use machine learning techniques to automatically construct test oracles for such non-terminating programs without reliance on explicit specifications. Firstly, we present a library, called InTOL (Intelligent Test Oracle Library), for the convenient and flexible collection of test traces. We can flexibly use either user guidance or program assertions to collect verdicts to test traces. Such verdicts are used as supervisory signals to the supervised learning algorithm (SLA) for a test oracle. Secondly, we present several sets of feature variables for the temporal relation among events in test traces of unbounded lengths. Then we present procedures that convert test traces into feature vectors, train an SLA with the feature vectors and their verdicts, and use the trained SLA as a test oracle. The approach is plausible since program traces are usually much easier to collect than formal specifications to construct. We report the implementation of InTOL on top of SVM (support vector machine). We experiment with two open-source benchmark SUTs from the internet to check the performance of our techniques. Our experiment data shows that high-accuracy test verdicts can be achieved with our test oracles for the benchmark SUTs.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:45:58Z (GMT). No. of bitstreams: 1
ntu-100-R98921042-1.pdf: 1081883 bytes, checksum: d7c0e610807f2bdc3b32c501e9fe4196 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書ii
Acknowledgments iii
中文摘要 v
Abstract vii
1 Introduction 1
2 Related Work 7
3 InTOL, Intelligent Test Oracle Library 9
3.1 Initialization of the trace collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Restarting a new trace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Generation of an event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Query and issue of verdicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Support vector machine (SVM) 17
5 Test oracles as SLAs with selected features 21
5.1 X0 feature variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 X1 feature variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 X2 feature variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 X3 feature variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 X4 feature variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.6 Construction of feature vectors and test oracles . . . . . . . . . . . . . . . . . . . . . . 27
6 Implementation and experiment 29
7 Conclusions 35
References 37
dc.language.isoen
dc.subject支持向量機zh_TW
dc.subject測試判別器zh_TW
dc.subject軟體驗證zh_TW
dc.subject自動化zh_TW
dc.subjectoracleen
dc.subjectautomateden
dc.subjectverificationen
dc.subjectSVMen
dc.title基於SVM技術之非終止系統之智慧型測試判別器zh_TW
dc.titleIntelligent test oracles based on SVM for non-terminating systemsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳志宏,張茂榮,顏嗣均,雷欽隆,顏嘉志
dc.subject.keyword測試判別器,軟體驗證,自動化,支持向量機,zh_TW
dc.subject.keywordoracle,verification,SVM,automated,en
dc.relation.page39
dc.rights.note有償授權
dc.date.accepted2011-08-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved