請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37805
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳力騏(Richie L. C. Chen) | |
dc.contributor.author | Po-Chuan Hsieh | en |
dc.contributor.author | 謝博全 | zh_TW |
dc.date.accessioned | 2021-06-13T15:44:43Z | - |
dc.date.available | 2008-07-07 | |
dc.date.copyright | 2008-07-07 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-02 | |
dc.identifier.citation | 1.Alocilja, E. C. and S. M. Radke. 2003. Market analysis of biosensors for food safety. Biosens. Bioelectron. 18(5): 841-846.
2.Andreescu, S., A. Avramescu, C. Bala, V. Magearu and J. L. Marty. 2002. Detection of organophosphorus insecticides with immobilized acetylcholinesterase: comparative study between two enzyme sensors. Anal. Bioanal. Chem. 374: 39-45. 3.Andreescu, S. and J. L. Marty. 2006. Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol. Eng. 23: 1-15. 4.Austin, P .R., C. J. Brine, J. E. Castle and J. P. Zikakis. 1981. Chitin: New facets of research. Science 102: 749-753. 5.Bachmann, T. T. and R. D. Schmidt. 1999. A disposable multielectrode biosensor for rapid simultaneous detection of the insecticides paraoxon and carbamate at high resolution. Anal. Chim. Acta 401: 95-103. 6.Baxter, A., M. Dillon, K. D. A. Taylor and G. A. F. Roberts. 1992. Improved method for IR determination of the degree of N-acetylation of chitosan. Int. J. Biol. Macromol. 14(3): 166-169. 7.Bonner, L. T. and E. R. Peskind. 2002. Pharmacologic treatments of dementia. Med. Clin. North Am. 86(3): 657-674. 8.Bough, W. A. 1976. Chitosan-a polymer from seafood waste, for use in treatment of food processing wastes and activated sludge. Proc. Biochem. 11: 13-16. 9.Bough, W. A., W. L. Salter, A. C. M. Wu and B. E. Perkins. 1978. Influence of manufacturing variables on the characteristics and effectiveness of chitosan products. I. Chemical composition, viscosity, and molecular-weight distribution of chitosan products. Biotechnol. Bioeng. 20: 1931-1939. 10.Braun, J., P. L. Chanu and F. L. Goffic. 1989. The immobilization of penicillin G acylase on chitosan. Biotechnol. Bioeng. 33: 242-246. 11.Chaudhury, R. G. N. K. 2007. Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects. Biosens. Bioelectron. 22: 2387-2399. 12.Chen, Y. and C. Li. 1996. Studies on the application of chitosan to clarification of grapefruit juice. Food Science Taiwan 23: 617-628. 13.Chen, J. J., Y. C. Lee, H. C. Lin and R. L. C. Chen. 2004. Determination of benzoate derivatives in soy sauce by capillary electrophoresis and in-capillary microextraction procedure. J. Food Drug Anal. 4: 332-335. 14.Chen, P. C., B. C. Hsieh, R. L. C. Chen, T. Y. Wang, H. Y. Hsiao and T. J. Cheng. 2006. Characterization of natural chitosan membranes from the carapace of the soldier crab Mictyris brevidactylus and its application to immobilize glucose oxidase in amperometric flow-injection biosensing system. Bioelectrochem. 68(1): 72-80. 15.Chiari, M., N. Dell’Orto and L. Casella. 1996. Separation of organic acids by capillary zone electrphoresis in buffers containing divalent metal cations. J. Chromatogra. A 745: 93-101. 16.Cosnier, S. 1999. Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens. Bioelectron. 14(5): 443-456. 17.Costagli, C. and A Galli. 1998. Inhibition of cholinesterase associated aryl acylamidase activity by anticholinesterase agents: Focus on drugs potentially effective in Alzheimer's disease. Biochem. Pharmaco. 55: 1733-1737. 18.Davies, D. H. and E. R. Hayes. 1988. Determination of the degree of acetylation of chitin and chitosan. Methods Enzymol. 161: 442-446. 19.Davis, L., J. J. Britten and M. Morgan. 1997. Cholinesterase: Its significance in anaesthetic practice. Anaesthesia 52: 244-260. 20.Domard, A. 1986. Circular-dichroism study on n-acetylglucosamine oligomers. Int. J. Biol. Macromol. 8(4): 243-246. 21.Domard, A. 1987. pH and c.d. measurements on a fully deacetylated chitosan - application to Cuii-polymer interactions. Int. J. Biol. Macromol. 9(2): 98-104. 22.Domszy, J. G. and G. A. F. 1985. Roberts. Evaluation of infrared spectroscopic techniques for analyzing chitosan. 1985. Makromol. Chem. 186(8): 1671-1677. 23.Du, J. M., H. Gemma and S. Iwahori. 1997. Effects of chitosan coating on the storage of peach, Japanese pear, and kiwifruit. J. Japan. Soc. Hort. Sci. 66(1): 15-22. 24.ElGhaouth, A. J. Arul, R. Ponnampalam and M. Boulet. 1991a. Chitosan coating effect on storability and quality of fresh strawberries. J. Food Sci. 56(6): 1618-1620. 25.ElGhaouth, A. J. Arul and R. Ponnampalam. 1991b. Use of chitosan coating to reduce water loss and maintain quality of cucumber and bell pepper fruits. J. Food Proc. Preserv. 15(5): 359-368. 26.ElGhaouth, A., R. Ponnampalam, F. Castaigne and J. Arul. 1992. Chitosan coating to extend the storage life of tomatoes. Hortscience 27(9): 1016-1018. 27.Finch, C. E. and D. M. Cohen. 1997. Aging, metabolism and Alzheimer disease: review and hypotheses. Exp. Neurol. 143: 82-102. 28.Garcia, M. N. V. and T. Mottram. 2003. Biosensor technology addressing agricultural problems. Biosyst. Eng. 84(1): 1-12. 29.Gardner, K. H. and J. Blackwell. 1975. Refinement of structure of beta-chitin. J. Biopolymers 14(8): 1581-1595. 30.Giacobini, E. 1998. Invited Review Cholinesterase inhibitors for Alzheimer’s disease therapy: from tacrine to future application. Neurochem. 32: 413-419. 31.Gong, B. Y. and J. W. Ho. 1997. Effect of zwitterionic surfactants on the separation of proteins by capillary electrophoresis. Electrophoresis 18: 732-735. 32.Han, X. and F. Shahidi. 1995. Extraction of harp seal gastric proteases and their immobilization on chitin. Food Chem. 52: 71-76. 33.Hirai, A., H. Odani and A. Nakajima. 1991. Determination of degree of deacetylation of chitosan by H-1-NMR spectroscopy. Polym. Bull. 26(1): 87-94. 34.Hsiao, H. Y., C. C. Tsai, S. Chen, B. C. Hsieh and R. L. C. Chen. 2004. Spectrophotometric determination of deacetylation degree of chitosan materials dissolved in phosphoric acid. Macromol. Biosci. 4(10): 919-921. 35.Hsieh, B. C., T. J. Cheng, T. Y. Wang and R. L. C. Chen. 2003. Use of chitosan membrane from the carapace of the soldier crab Mictyris brevidactylus for biosensor construction. Mar. Biotechnol. 5(2): 119-125. 36.Hsieh, B. C., K. Matsumoto, T. J. Cheng, G. Yuu and R. L. C. Chen. 2007. Choline biosensor constructed with chitinous membrane from soldier crab and its application in measuring cholinesterase inhibitory activities. J. Pharmaceut. Biomed. 45(4): 673-678. 37.Imeri, A. G. and D. Knorr. 1988. Effect of chitosan on yield and compositional data of carrot and apple juice. J. Food Sci. 53: 1707-1709. 38.Jha, N., I. Leela and A. V. S. P. Rao. 1988. Removal of cadmium using chitosan. J. Environ. Eng. 114(4): 962.974. 39.Joshi, K. A., J. Tang, R. Haddon, J. Wang, W. Chen and A. Mulchaldani. 2005. A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis 14: 54-58. 40.Kang, D. W., H. K. Choi and D. K. Kweon. 1996. Selective adsorption capacity for metal ions of amidoximated chitosan bead-g-PAN copolymer. Polymer (Korea) 20(6): 989-995. 41.Kasaai, M. R. 2007. Calculation of Mark-Houwink-Sakurada (MHS) equation viscometric constants for chitosan in any solvent-temperature system using experimental reported viscometric constants data. Carbohydr. Polym. 68: 477-488. 42.Katsu, T. and N. Hanada. 1996. Determination of cholinesterase in blood serum using a benzoate-selective membrane electrode made with heptyl-4-trifluoroacetylbenzoate neutral carrier. Anal. Chim. Acta 321: 21-25. 43.Kawaguchi, S. 2002. Effect of tube-type burrows by soldier crab Mictyris longicarpus var. brevidactylus on alteration of soil microflora in the tidal flat of mangrove forest. http://www.subtropics.or.jp. 44.Kelly, M. A., K. D. Altria and B. J. Clark. 1997. Approaches used in the reduction of buffer electrolysis procedures in pharmaceutical analysis. J Chromatogra. A 768: 73-80. 45.Kim, I. Y., S. J. Seo, H. S. Moon, M. K. Yoo, I. Y. Park, B. C. Kim and C. S. Cho. 2008. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26: 1-21. 46.Knorr, D. 1984. Use of chitinous polymers in food. Food Technol. 38(1): 85-97. 47.Knorr, D. 1986. Nutritional quality, food processing, and biotechnology aspects of chitin and chitosan: a review. Proc. Biochem. 6: 90-92. 48.Knorr, D. 1991. Recovery and utilization of chitin and chitosan in food processing waste management. Food technol. 45: 114-122. 49.Kondo, M., T. Hada, K. Fukui, A. Iwasaki, K. Higashino and K. Yasukawa. 1995. Enzyme-linked immunosorbent assay (ELISA) for Aleuria aurantia lectin-reactive serum cholinesterase to differentiate liver cirrhosis and chronic hepatitis, Clin. Chim. Acta 243: 1-9. 50.Kono, M., T. Matsui and C. Shimizu. 1987. Effect of chitin, chitosan and cellulose as diet supplements on the growth of cultured fish. Nippon Suisan Gakkaishi 53: 125-129. 51.Krajewska, B. 2005. Membrane-based processes performed with use of chitin/chitosan materials. Sep. Purif. Technol. 41: 305-312. 52.Kumar, M. N. V. R. 2000. A review of chitin and chitosan applications. React. Funct. Polym. 46(1): 1-27. 53.Kurita, K., S. Inoue and Y. Koyama. 1989. Studies on chitin. 18. Preparation of diethylaminoethyl-chitins. Polym. Bull. 21(1): 13-17. 54.Kurita, K. M. Kayama and S. Nishimura. 1991. Solubilization of a rigid polysaccharide - controlled partial n-acetylation of chitosan to develop solubility. Carbohydr. Polym. 16(1): 83-92. 55.Kurita, K., K. Tomita, T. Tada, S. Ishii, S. Nishimura and K. Shimoda. 1993. Squid chitin as a potential alternative chitin source - deacetylation behavior and characteristic properties. J. Polym. Sci. 31(2): 485-491. 56.Kurita, k., S. Ishii, K. Tomita, S. Nishimura and K. Shimoda. 1994. Reactivity characteristics of squid beta-chitin as compared with those of shrimp chitin - high potentials of squid chitin as a starting material for facile chemical modifications. J. Polym. Sci.: Part A: Polym. Chem. 32(6): 1027-1032. 57.Kurita, K. 2001. Controlled functionalization of the polysaccharide chitin. Prog. Polym. Sci. 26: 1921-1971. 58.Li, J., J. F. Revol and R. H. Marchessault. 1997. Effect of degree of deacetylation of chitin on the properties of chitin crystallites. J. Appl. Polym. Sci. 65(2): 373-380. 59.Lee, H. S., Y. A. Kim, Y. A.Chao and Y. T. Lee. 2002. Oxidation of organophosphorus pesticides for the sensitive detection by a cholinesterase-based biosensor. Chemosphere 46: 571-576. 60.Lin, Y. H., F. Lu and J. Wang. 2004. Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis 16: 145-149. 61.Maghami, G. A. and G. A. F. Roberts. 1988. Studies on the adsorption of anionic dyes on chitosan. Makromol. Chem. 189(10): 2239-2243. 62.Mark, H. F., N. M. Bikales, C. G. Overberger and G. Menges. (Eds.). 1985. Encyclopedia of polymer science and engineering, Vol. 1, Wiley, New York, p. 20. 63.Mazeau, K., W. T. Winter and H. Chanzy. 1994. Molecular and crystal-structure of a high-temperature polymorph of chitosan from electron-diffraction data. Macromolecules 27(26): 7606-7612. 64.McQueen, M. J. 1995. Clinical and analytical considerations in the utilization of cholinesterase measurements. Clin. Chim. Acta 237: 91-105. 65.Mello, L. D. and L. T. Kubota. 2002. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem. 77: 237-256. 66.Minke, R. and J. Blackwell. 1978. Structure of alpha-chitin. J. Mol. Biol. 120(2): 167-181. 67.Miyoshi, H., K. Shimura, K. Watanabe and K. Onodera. 1992. Characterization of some fungal chitosans. Biosci. Biotech. Biochem. 56(12): 1901-1905. 68.Mohanty, S. P. and E. Kougianos. 2006. Biosensor: a tutorial review. IEEE Potentials 25(2): 35-40. 69.Muzzarelli, R. A. A., M. Weckx and O. Fillipini. 1989. Removal of trace metal ions from industrial waters, unclear effluents and drinking water with the aid of cross-linked N-carbonxymethyl chitosan. Carbohydr. Poly. 11: 293-296. 70.Nelson, R. J., A. Pailus, A. S. Cohen, A. Guttman and B. L. Karger. 1989. Use of peltier thermoelectric devices to control column temperature in high performance capillary electrophoresis. J. Chromatogr. 480: 111-127. 71.Newman, J. D. and A. P. F. Turner. 2005. Home blood glucose biosensors: a commercial perspective. Biosens. Bioelectron. 20: 2435-2453. 72.No, H. K. and S. P. Meyers. 1989. Crawfish chitosan as a coagulant in recovery of organic compounds from seafood processing streams. J. Agric. Food Chem. 37: 580-583. 73.Osawa, S., K. Kariyone, F. Ichihara, K. Arai, N. Takagasa and H. Ito. 2005. Development and application of serum cholinesterase activity measurement using benzoylthiocholine iodide. Clin. Chim. Acta 351: 65-72. 74.Pelletier, A., I. Lemire, J. Sygusch, E. Chornet and R. P. Overend. 1990. Chitin chitosan transformation by thermomechanochemical treatment including characterization by enzymatic depolymerization. Biotechnol. Bioeng. 36(3): 310.315. 75.Peniche-covas, C., L. W. Alwarez and W. Arguelles-Monal. 1987. The adsorption of mercuric ions by chitosan. J. Appl. Polym. Sci. 46(7): 1147-1150. 76.Pierre, A. C. 2004. The sol-gel encapsulation of enzymes. Biocatal. Biotransform. 22: 145-170. 77.Rahman, Md. A., D. S. Park and Y. B. Shim. 2004. A performance comparison of choline biosensors: anodic or cathodic detections of H2O2 generated by enzyme immobilized on a conducting polymer. Biosens. Bioelectron. 19: 1565-1571. 78.Rathke, T. D. and S. M. Hudson. 1993. Determination of the degree of n-deacetylation in chitin and chitosan as well as their monomer sugar ratios by near-infrared spectroscopy. J. Polym. Sci., Polym. Chem. Ed. 31(3): 749.753. 79.Raymond, L., F. G. Morin and R. H. Marchessault. 1993. Degree of deacetylation of chitosan using conductometric titration and solid-state NMR. Carbohydr. Res. 246: 331.336. 80.Roberts, G. A. F. 1992. Chitin Chemistry. Hound-mills: Macmillan. 81.Saito, Y., J. L. Putaux, T. Okano, F. Gaill and H. Chanzy. 1997. Structural aspects of the swelling of beta chitin in HCl and its conversion into alpha chitin. Macromolecules 30(13): 3867-3873. 82.Sannan, T., K. Kurita and Y. Iwakura. 1976. Studies on chitin. 2. effect of deacetylation on solubility. Makromol. Chem. 177(12): 3589-3600. 83.Sashiwa, H., H. Saimoto, Y. Shigemasa, R. Ogawa and S. Tokura. 1991. Distribution of the acetamide group in partially deacetylated chitins. Carbohydr. Polym. 16(3): 291.296. 84.Sashiwa, H., H. Saimoto, Y. shigemasa and S. Tokura. 1993. N-acetyl group distribution in partially deacetylated chitins prepared under homogeneous conditions. Carbohydr. Res. 242: 167-172. 85.Shahidi, F., J. K. V. Arachchi and Y. J. Jeon. 1999. Food applications of chitin and chitosans. Trends Food Sci. Tech. 10: 37-51. 86.Shigemasa, Y., H. Matsuura, H. Sashiwa and H. Saimoto. 1996. Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. Int. J. Biol. Macromol. 18(3): 237-242. 87.Singh, D. K. and A. R. Ray. 1999. Controlled release of glucose through modified chitosan membranes. J. Membr. Sci. 155: 107-112. 88.Shu, X. Z., K. J. Zhu and W. Song. 2001. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int. J. Pharmacutics 212: 19-28. 89.Siso, M. I. G., E. Lang, B. C. Gomez, M. Becerra, F. O. Espinar and J. B. Mendez. 1997. Enzyme encapsulation on chitosan microbeads. Proc. Biochem. 32: 211-216. 90.Spagna, G., P. G. Pifferi, C. Rangoni, F. Mattivi, G. Nicolini and R. Palmonari. The stabilization of white wines by adsorption of phenolic compounds on chitin and chitosan. Food Res. Intern. 29: 241-248. 91.Stradiotto, N. R., H. Yamanaka and M. V. B. Zanoni. 2003. Electrochemical sensor: a powerful tool in analytical chemistry. J. Brazil. Chem. Soc. 14(2): 159-173. 92.Sugawara, K., T. Takano, H. Fukushi, S. Hoshi, K. Akatsuka, H. Kuramitz and S. Takana. 2000. Glucose sensing by a carbon-paste electrode containing chitin modified with glucose oxidase. J. Electroanal. Chem. 482(1): 81-86. 93.Synowiecki, J., Z. E. Sikorski, M. Naczk and H. Piotrzkowska. 1982. Immobilization of enzyme on krill chitin activated by formaldehyde. Biotechnol. Bioeng. 24: 1871-1876. 94.Takeda, M. 1978. Soldier crabs from Australia and Japan. Bull. Natn. Sci. Mus., Ser. A (Zool.). 4(1): 31-38. 95.Takeda, S. and M. Murai. 2004. Microhabitat use by the soldier crab Mictyris brevidactylus (Brachyura: Mictyridae): interchangeability of surface and subsurface feeding through burrow structure alteration. J. Crustacean Biol. 24(2): 327-339. 96.Takeda, S., M. Matsumasa, H. S. Yong and M. Murai. 1996. “Igloo” construction by the ocypodid crab, Dotilla myctiroides (Milne-Edwards) (Crustacea; Brachyura): the role of an air chamber when burrowing in a saturated sandy substratum. J. Exp. Mar. Biol. Ecol. 198: 237-247. 97.Tirmizi, S. A., J. Iqbal and M. Isa. 1996. Collection of metal ions present in water samples of different sites of Pakistan using biopolymer chitosan. J. Chem. Soc. Pakistan 18: 312-315. 98.Vaidya, R., P. Atanasov and E. Willkins. 1995. Effect of interference on the performance of glucose enzyme electrodes using Nafion coatings. Med. Eng. Phys. 17: 16-424. 99.Valerie, D. and D. V. Vinod. 1998. Pharmaceutical applications of chitosan. Pharm. Sci. Technol. Today. 1(6): 246-253. 100.Vinther, A. and H. Soeberg. 1991. Mathematical-model describing dispersion in free solution capillary electrophoresis under stacking-conditions. J. Chromatogr. 559: 3-26. 101.Volesky, B. 1987. Biosensors for metal recovery. Trends Biotechnol. 5: 96-99. 102.Wei, Y. C. and S. M. Hudson. 1993. Binding of sodium dodecyl-sulfate to a polyelectrolyte based on chitosan. Macromolecules 26(16): 4151-4154. 103.Weltrowski, M., B. Martel and M. Norcellet. 1996. Chitosan N-benzyl sulfonate derivatives as sorbents for removal of metal ions in an acidic medium. J. Appl. Polym. Sci. 59(4): 647-654. 104.Win, N. N., G. Pengju and W. F. Stevens. 2000. Deacetylation of chitin by fungal enzymes. Adv. Chitin Sci. 4: 55-62. 105.Yu, G. E., F. G. Morin, G. A. R. Nobes and R. H. Marchessault. 1999. Degree of acetylation of chitin and extent of grafting PHB on chitosan determined by solid state N-15 MMR. Macromolecules 32(2): 518-520. 106.Zhang, D. L. and P. C. Quantick. 1997. Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi (Litchi chinensis Sonn.) fruit. Postharvest Biol. Technol. 12(2): 195-202. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37805 | - |
dc.description.abstract | 將台灣種短趾和尚蟹(Mictyris brevidactylus Stimpson, 1858)施予1 M鹽酸處理去除蟹殼上的碳酸鈣等灰質(1 hr),接著施予1 M氫氧化鈉處理分解蟹肉蛋白質後(2 hrs),可由其背部甲殼取得顏色接近透明、天然的幾丁質皮膜。皮膜厚度約為20 um至50 um,含水率約為90%至98%,分子量在1000 kDa以上。透過機械性質測試發現和尚蟹幾丁質皮膜擁有的拉力強度(5.57 MPa)甚至優於厚度為120 um之Parafilm○R (4.39 MPa),皮膜細微孔徑構造能成功阻隔待測溶液中如蛋白質高分子與帶電干擾物影響(例如:維生素C),藉由循環伏安法與電化學阻抗分析結果得知,和尚蟹皮膜本身不具有電化學活性,亦能在不影響中性待測物質之質傳與擴散的前提下,有效地排除血清蛋白質非特異性吸附,保護電極表面。
本研究欲利用和尚蟹幾丁質皮膜作為酵素固定化擔體物質,以架橋劑戊二醛(glutaraldehyde)固定化葡萄糖氧化酵素(glucose oxidase, EC 1.1.3.4),架構高靈敏度葡萄糖電極與流動注射式葡萄糖生物感測器,並應用於檢測市售乳酸醱酵飲料之葡萄糖含量。另外也以相同手法固定化膽鹼氧化酵素(choline oxidase, EC 1.1.3.17),組裝流動注射式膽鹼感測器,應用於篩選抗乙醯膽鹼酯酉每活性之天然物質(可作為抗阿茲海默症天然藥物)以及評估血清膽鹼酯酉每之活性(肝臟功能的一項重要指標)。實驗結果發現以和尚蟹酵素皮膜所組裝的生物感測器,其耐用度皆可達到兩個月以上,並且顯示出良好的感測器性能,包括葡萄糖或膽鹼之檢出上限、檢測極限、重複性、再現性等。 | zh_TW |
dc.description.abstract | Chitinous membranes from the dorsal part of Taiwanese soldier crabs (Mictyris brevidactylus Stimpson, 1858) were purified by a sequence of acid/base treatments (treated with 1 M HCl for 1 hr, and then with 1 M NaOH for 2 hrs). The thicknesses of the clear chitinous membranes were measured to be 20 um - 50 um, the moistures were 90% - 98%, and the molecular weights were estimated over than 1000 kDa. The natural membranes showed higher tensile strengths (5.57 MPa) than the laboratory-use thin film, Parafilm○R (4.39 MPa, 120 um in thickness). Moreover, the fine pore-sized structure of the membranes could effectively impede the diffusion of problematic biomacromolecule and charged interferents such as ascorbate through the membrane. Both the cyclic voltammetric curves and the electrochemical impedance curves revealed that the biomembrane was electrochemical inert, and the electrostatic interaction between positively charged amino groups on the surface of chitinous membrane and negatively charged human serum albumin particles could extensively reduce the electrode fouling by non-specific adsorption of serum proteins.
Our study utilized the natural chitinous membrane as the supporting material for enzyme immobilization by a cross-linking reagent, glutaraldehyde. For glucose sensing, glucose oxidase (EC 1.1.3.4) was immobilized to construct a glucose sensing electrode, and a flow injection glucose biosensor. These two systems were successfully applied to evaluate the glucose content in commercial soft drinks and fermentation broths. For choline sensing, choline oxidase (EC 1.1.3.17) was immobilized to construct a flow injection choline biosensor, this system was proved to be useful in screening natural substances with acetyl cholinesterase inhibitory activities that may become potential neutraceuticals for preventing Alzheimer’s disease, and was also used to estimate serum cholinesterase activity, a useful clinical index for liver function. All the experimental results demonstrated the constructed biosensors were sensitive, reproducible, and durable to glucose or choline biosensing for at least two months. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:44:43Z (GMT). No. of bitstreams: 1 ntu-97-F91631003-1.pdf: 5498002 bytes, checksum: 98f8e6b126bc5f340925a0c60c4469b9 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目錄 vi 圖目錄 x 表目錄 xiii 第一章 前言 1 1.1和尚蟹與生物感測器 1 1.2和尚蟹幾丁質皮膜應用於膽鹼酯酉每活性測定 3 第二章 文獻探討 5 2.1和尚蟹 5 2.2幾丁質、幾丁聚醣 6 2.2.1幾丁質、幾丁聚醣之歷史 6 2.2.2幾丁質、幾丁聚醣之來源 6 2.2.3幾丁質、幾丁聚醣之結構與晶型 7 2.2.4幾丁質、幾丁聚醣之製備 9 2.2.5幾丁質、幾丁聚醣之物理化學特性 10 2.2.5.1溶解度 10 2.2.5.2去乙醯率 10 2.2.5.3分子量 11 2.2.6幾丁質、幾丁聚醣之產業應用 13 2.2.6.1農業及食品方面 13 2.2.6.2廢水處理方面 14 2.2.6.3生醫、生化科技方面 14 2.3生物感測器 16 2.3.1生物感測器之定義 16 2.3.2生物元件與感測器元件 16 2.3.3生物感測器之產業應用 17 第三章 實驗設備與方法 19 3.1實驗藥品與儀器設備 19 3.1.1實驗藥品 19 3.1.2實驗儀器設備 20 3.2和尚蟹幾丁質皮膜製備與物理化學性質量測 21 3.2.1和尚蟹幾丁質皮膜純化 21 3.2.2去乙醯化 24 3.2.3去乙醯率量測 24 3.2.4膜厚量測 24 3.2.5皮膜拉力強度及形變伸長量測試 24 3.2.6皮膜含水率量測 26 3.2.7皮膜分子量量測 26 3.2.8皮膜離子選擇性研究 26 3.2.9皮膜抗蛋白質非特異性吸附研究 27 3.2.9.1循環伏安分析 27 3.2.9.2電化學阻抗分析 27 3.2.10合成不同分子量與不同厚度之幾丁聚醣膜 28 3.3葡萄糖電極 29 3.3.1酵素固定化 29 3.3.2系統架設 30 3.3.3量測原理 31 3.3.4市售乳酸醱酵飲料之葡萄糖含量測定 31 3.4流動注射式電化學葡萄糖生物感測系統 32 3.4.1酵素固定化 32 3.4.2電化學流穿槽製作 32 3.4.3系統架設 33 3.4.4量測原理 34 3.4.5電極表面修飾 34 3.4.6葡萄糖比色法 34 3.5流動注射式電化學膽鹼生物感測系統 35 3.5.1酵素固定化 35 3.5.2電化學流穿槽製作 35 3.5.3系統架設 37 3.5.4量測原理 38 3.5.5乙醯膽鹼酯酉每抑制型生物感測器之研發 39 3.5.5.1乙醯膽鹼酯酉每阻害率評估 39 3.5.5.2篩選抗乙醯膽鹼酯酉每活性之天然物質 40 3.5.6血清膽鹼酯酉每生物感測器之研發 40 3.5.6.1血清膽鹼酯酉每活性評估 40 3.6毛細管電泳法 41 第四章 結果與討論 42 4.1和尚蟹幾丁質皮膜之物理化學性質 42 4.1.1去乙醯化作用對皮膜機械強度之影響 42 4.1.2去乙醯化作用對皮膜含水率之影響 45 4.1.3和尚蟹皮膜分子量研究 47 4.1.4不同分子量人工幾丁聚醣薄膜之性質 49 4.1.5不同厚度人工幾丁聚醣薄膜之性質 50 4.1.6皮膜離子選擇性研究 51 4.1.7皮膜抗蛋白質非特異性吸附研究 53 4.2葡萄糖電極 57 4.2.1系統pH值最佳化 57 4.2.2系統感測性能 59 4.2.3市售乳酸醱酵飲料之葡萄糖含量測定 62 4.3流動注射式電化學葡萄糖生物感測系統 63 4.3.1系統流速最佳化 63 4.3.2系統感測性能 65 4.3.3電極表面修飾 67 4.3.4系統準確度比對 68 4.4流動注射式電化學膽鹼生物感測系統 69 4.4.1緩衝溶液離子濃度最佳化 69 4.4.2系統pH值最佳化 71 4.4.3系統感測性能 73 4.4.4乙醯膽鹼酯酉每抑制型生物感測器 74 4.4.4.1乙醯膽鹼酯酉每阻害率量測 74 4.4.4.2溫度對乙醯膽鹼酯酉每阻害率之影響 76 4.4.4.3篩選抗乙醯膽鹼酯酉每活性之天然物質 78 4.4.5血清膽鹼酯酉每生物感測器 79 4.4.5.1血清膽鹼酯酉每活性測定 79 4.4.6毛細管電泳法量測血清膽鹼酯酉每活性 80 4.4.6.1 Benzoylcholine及benzoic acid紫外光光譜特性 80 4.4.6.2電泳液pH值對電泳分離效果之影響 82 4.4.6.3電泳液離子濃度對電泳分離效果之影響 83 4.4.6.4歐姆定律 84 4.4.6.5外加電壓對電泳分離效果之影響 85 4.4.6.6毛細管電泳分離最佳化條件 86 4.4.6.7血清膽鹼酯酉每活性測定 88 4.4.6.8系統比對 90 第五章 結論 91 參考文獻 92 附錄A 和尚蟹生態衛星定位調查 103 A.1和尚蟹生態衛星定位調查方法 103 A.2和尚蟹生態衛星定位調查結果 105 A.2.1和尚蟹棲地衛星定位點 105 A.2.2和尚蟹習性 106 A.2.3各棲地概況 108 A.2.3.1挖仔尾和尚蟹生態調查 108 A.2.3.2香山濕地和尚蟹生態調查 110 A.2.3.3竹南濕地和尚蟹生態調查 112 A.2.3.4高美濕地和尚蟹生態調查 114 A.2.3.5福寶濕地和尚蟹生態調查 116 A.2.3.6王功濕地和尚蟹生態調查 118 A.2.3.7好美里濕地和尚蟹生態調查 120 A.2.3.8七股濕地和尚蟹生態調查 122 個人簡歷 124 | |
dc.language.iso | zh-TW | |
dc.title | 和尚蟹幾丁質皮膜於生物感測的應用 | zh_TW |
dc.title | Applications of Chitinous Membrane from Soldier Crab on Biosensor Construction | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 鄭宗記(Tzong-Jih Cheng),陳林祈(Lin-Chi Chen),何國川(Kuo-Chuan Ho),孔繁璐(Fan-Lu Kung) | |
dc.subject.keyword | 和尚蟹,幾丁質皮膜,生物感測器,葡萄糖氧化酵素,膽鹼氧化酵素, | zh_TW |
dc.subject.keyword | soldier crab,chitinous membrane,biosensor,glucose oxidase,choline oxidase, | en |
dc.relation.page | 126 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-02 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 5.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。