Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37728
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶瑞(Ching-Ray Chang)
dc.contributor.authorYi-Cheng Huangen
dc.contributor.author黃意誠zh_TW
dc.date.accessioned2021-06-13T15:40:42Z-
dc.date.available2012-08-12
dc.date.copyright2011-08-12
dc.date.issued2011
dc.date.submitted2011-08-10
dc.identifier.citation[1] Stuart S. P. Parkin, Masamitsu Hayashi, and Luc Thomas, “Magnetic domain-wall
racetrack memory,” Science, vol. 320, no. 5873, pp. 190–194, 2008.
[2] S. Krause, G. Herzog, T. Stapelfeldt, L. Berbil-Bautista, M. Bode, E. Y. Vedmedenko,
and R. Wiesendanger, “Magnetization reversal of nanoscale islands: How
size and shape affect the arrhenius prefactor,” Phys. Rev. Lett., vol. 103, no. 12, pp.
127202, Sep 2009.
[3] D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn,
“Magnetic domain-wall logic,” Science, vol. 309, no. 5741, pp. 1688–1692, 2005.
[4] Geoffrey S. D. Beach, Corneliu Nistor, Carl Knutson, Maxim Tsoi, and James L.
Erskine, “Dynamics of field-driven domain-wall propagation in ferromagnetic
nanowires,” Nat Mater, vol. 4, no. 10, pp. 741–744, Oct. 2005.
[5] Del Atkinson, Dan A. Allwood, Gang Xiong, Michael D. Cooke, Colm C. Faulkner,
and Russell P. Cowburn, “Magnetic domain-wall dynamics in a submicrometre
ferromagnetic structure,” Nat Mater, vol. 2, no. 2, pp. 85–87, Feb. 2003.
[6] O. A. Tretiakov, D. Clarke, Gia-Wei Chern, Ya. B. Bazaliy, and O. Tchernyshyov,
“Dynamics of domain walls in magnetic nanostrips,” Phys. Rev. Lett., vol. 100, no.
12, pp. 127204, Mar 2008.
[7] Mi-Young Im, Lars Bocklage, Peter Fischer, and Guido Meier, “Direct observation
of stochastic domain-wall depinning in magnetic nanowires,” Phys. Rev. Lett., vol.
102, no. 14, pp. 147204, Apr 2009.
37
[8] Jos’e L. Prieto, Manuel Mu˜noz, and Eduardo Mart’ınez, “Structural characterization
of magnetic nanostripes by fast domain wall injection,” Phys. Rev. B, vol. 83, no.
10, pp. 104425, Mar 2011.
[9] Sang-Koog Kim, Youn-Seok Choi, Ki-Suk Lee, Konstantin Y. Guslienko, and Dae-
Eun Jeong, “Electric-current-driven vortex-core reversal in soft magnetic nanodots,”
Applied Physics Letters, vol. 91, no. 8, pp. 082506, 2007.
[10] Sang-Koog Kim, Ki-Suk Lee, Young-Sang Yu, and Youn-Seok Choi, “Reliable
low-power control of ultrafast vortex-core switching with the selectivity in an array
of vortex states by in-plane circular-rotational magnetic fields and spin-polarized
currents,” Applied Physics Letters, vol. 92, no. 2, pp. 022509, 2008.
[11] Youn-Seok Choi, Myoung-Woo Yoo, Ki-Suk Lee, Young-Sang Yu, Hyunsung Jung,
and Sang-Koog Kim, “Out-of-plane current controlled switching of the fourfold
degenerate state of a magnetic vortex in soft magnetic nanodots,” Applied Physics
Letters, vol. 96, no. 7, pp. 072507, 2010.
[12] Ki-Suk Lee and Sang-Koog Kim, “Two circular-rotational eigenmodes and their
giant resonance asymmetry in vortex gyrotropic motions in soft magnetic nanodots,”
Phys. Rev. B, vol. 78, no. 1, pp. 014405, Jul 2008.
[13] Youn-Seok Choi, Ki-Suk Lee, and Sang-Koog Kim, “Quantitative understanding
of magnetic vortex oscillations driven by spin-polarized out-of-plane dc current:
Analytical and micromagnetic numerical study,” Phys. Rev. B, vol. 79, no. 18, pp.
184424, May 2009.
38
[14] C. T. Boone, J. A. Katine, M. Carey, J. R. Childress, X. Cheng, and I. N. Krivorotov,
“Rapid domain wall motion in permalloy nanowires excited by a spin-polarized
current applied perpendicular to the nanowire,” Phys. Rev. Lett., vol. 104, no. 9, pp.
097203, Mar 2010.
[15] C. T. Boone and I. N. Krivorotov, “Magnetic domain wall pumping by spin transfer
torque,” Phys. Rev. Lett., vol. 104, no. 16, pp. 167205, Apr 2010.
[16] A. V. Khvalkovskiy, K. A. Zvezdin, Ya. V. Gorbunov, V. Cros, J. Grollier, A. Fert,
and A. K. Zvezdin, “High domain wall velocities due to spin currents perpendicular
to the plane,” Phys. Rev. Lett., vol. 102, no. 6, pp. 067206, Feb 2009.
[17] Z. Li and S. Zhang, “Domain-wall dynamics and spin-wave excitations with spintransfer
torques,” Phys. Rev. Lett., vol. 92, no. 20, pp. 207203, May 2004.
[18] S. Zhang and Z. Li, “Roles of nonequilibrium conduction electrons on the magnetization
dynamics of ferromagnets,” Phys. Rev. Lett., vol. 93, no. 12, pp. 127204, Sep
2004.
[19] R.Wieser, E. Y. Vedmedenko, P.Weinberger, and R.Wiesendanger, “Current-driven
domain wall motion in cylindrical nanowires,” Phys. Rev. B, vol. 82, no. 14, pp.
144430, Oct 2010.
[20] Matteo Franchin, Thomas Fischbacher, Giuliano Bordignon, Peter de Groot, and
Hans Fangohr, “Current driven dynamics of domain walls constrained in ferromagnetic
nanopillars,” Phys. Rev. B, vol. 78, no. 5, pp. 054447, Aug 2008.
39
[21] J. He, Z. Li, and S. Zhang, “Current-driven vortex domain wall dynamics by micromagnetic
simulations,” Phys. Rev. B, vol. 73, no. 18, pp. 184408, May 2006.
[22] Z. Li and S. Zhang, “Domain-wall dynamics driven by adiabatic spin-transfer
torques,” Phys. Rev. B, vol. 70, no. 2, pp. 024417, Jul 2004.
[23] A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo, “Real-space
observation of current-driven domain wall motion in submicron magnetic wires,”
Phys. Rev. Lett., vol. 92, no. 7, pp. 077205, Feb 2004.
[24] M. Kl‥aui, P.-O. Jubert, R. Allenspach, A. Bischof, J. A. C. Bland, G. Faini,
U. R‥udiger, C. A. F. Vaz, L. Vila, and C. Vouille, “Direct observation of domainwall
configurations transformed by spin currents,” Phys. Rev. Lett., vol. 95, no. 2,
pp. 026601, Jul 2005.
[25] Masamitsu Hayashi, Luc Thomas, Charles Rettner, Rai Moriya, Yaroslaw B. Bazaliy,
and Stuart S. P. Parkin, “Current driven domain wall velocities exceeding the
spin angular momentum transfer rate in permalloy nanowires,” Phys. Rev. Lett., vol.
98, no. 3, pp. 037204, Jan 2007.
[26] A. Vanhaverbeke, A. Bischof, and R. Allenspach, “Control of domain wall polarity
by current pulses,” Phys. Rev. Lett., vol. 101, no. 10, pp. 107202, Sep 2008.
[27] M. Hayashi, L. Thomas, Ya. B. Bazaliy, C. Rettner, R. Moriya, X. Jiang, and
S. S. P. Parkin, “Influence of current on field-driven domain wall motion in permalloy
nanowires from time resolved measurements of anisotropic magnetoresistance,”
Phys. Rev. Lett., vol. 96, no. 19, pp. 197207, May 2006.
40
[28] Guido Meier, Markus Bolte, Ren’e Eiselt, Benjamin Kr‥uger, Dong-Hyun Kim, and
Peter Fischer, “Direct imaging of stochastic domain-wall motion driven by nanosecond
current pulses,” Phys. Rev. Lett., vol. 98, no. 18, pp. 187202, May 2007.
[29] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne,
G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of
(001)fe/(001)cr magnetic superlattices,” Phys. Rev. Lett., vol. 61, no. 21, pp. 2472–
2475, Nov 1988.
[30] S. S. P. Parkin, R. Bhadra, and K. P. Roche, “Oscillatory magnetic exchange coupling
through thin copper layers,” Phys. Rev. Lett., vol. 66, no. 16, pp. 2152–2155,
Apr 1991.
[31] A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada,
F. T. Parker, A. Hutten, and G. Thomas, “Giant magnetoresistance in heterogeneous
cu-co alloys,” Phys. Rev. Lett., vol. 68, no. 25, pp. 3745–3748, Jun 1992.
[32] M. Julliere, “Tunneling between ferromagnetic films,” Physics Letters A, vol. 54,
no. 3, pp. 225 – 226, 1975.
[33] Yoshinobu Nakatani, Andr Thiaville, and Jacques Miltat, “Head-to-head domain
walls in soft nano-strips: a refined phase diagram,” Journal of Magnetism and Magnetic
Materials, vol. 290-291, no. Part 1, pp. 750 – 753, 2005, Proceedings of the
Joint European Magnetic Symposia (JEMS’ 04).
[34] R.D. McMichael and M.J. Donahue, “Head to head domain wall structures in thin
magnetic strips,” Magnetics, IEEE Transactions on, vol. 33, no. 5, pp. 4167 –4169,
sep 1997.
41
[35] “Nmag - a micromagnetic simulation environment,” http://nmag.soten.ac.
uk/, June 2007.
42
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37728-
dc.description.abstract本文主要是以數值模擬的方法研究缺陷對於準一維磁區動力學之影響。在此
研究中,我們設計了一個帶有四個缺陷之鐵磁奈米條紋,其系統磁化含有兩個磁
區,在兩磁區之間含有一頭對頭的磁區壁,且其磁化在系統兩端為固定,接著注
入沿平面流動之自旋偏極化電流,藉以驅動磁區壁移動;由於缺陷之影響,此系
統之磁化形成了兩個穩定態,應用不同電流密度之自旋偏極化電流,可驅使磁化
在兩穩定態之間轉換。我們發現,在電流關閉時,磁區壁會有反彈的效應,而此
效應只有在電流密度大於jcriticle且電流下降時間小於2 109秒時出現。
由於應用此效應,可以使用同方向之直流電控制磁區壁之位置,進而使元件更加簡化,因此反彈效應在自旋扭矩傳輸相關之元件設計有許多應用潛力。
zh_TW
dc.description.abstractWe study the effect of defects on the dynamics of quasi-one-dimensional magnetic domain by simulation. In the present study, the system is composed of a ferromagnetic
nanostripe and four symmetric defects.The magnetization of the nanostripe is assumed to be pinned at the two end, and it contains a single domain wall.We use the spin polarized
current flowed in the plane driving the domain wall motion.There are two stable states of magnetization due to defects.The different current density values and directions let the magnetization be transformed between the two stable states.We find that the domain wall was rebounded when the current was switched off.And the rebounding phenomenon
appears only if the current density j is greater than j_criticle and the fall time is less than 2x10^9 second. The phenomenon could be used in STT-based devices because the domain wall location could be controlled by the direct current and the devices could be simpler.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:40:42Z (GMT). No. of bitstreams: 1
ntu-100-R97245015-1.pdf: 5447048 bytes, checksum: 19b53a533c33e3924ca53eee468eeb5a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 Method and Magnetism Background . . . . . . . . . . . . 3
2.1 The system cofiguration . . . . . . . . . . . . . . 3
2.2 Magnetoresistance . . . . . . . . . . . . . . . . . .3
2.2.1 Measurement methods of magnetoresistance . . . . 4
2.2.2 Introduction to several types of magnetoresistance .5
2.3 Domain wall structure in nanostripes . . . . . . . ..8
2.4 Landau-Lifshitz-Gilbert (LLG) equation and Spin Torque Transfer . . . . 10
2.5 Introduction to Nmag . . . . . . . . . . . . . . . . 11
2.6 Material Parameters . . . . . . . . . . . . . . . . 12
3 Results of the simulation . . . . . . . . . . . . . . . 14
3.1 Domain wall motion with different current density .. 14
3.1.1 j j j < j jc1 j . . . . . . . . . . . . . . . . ..14
3.1.2 j jc1 j j j j<j jc2 j . . . . . . . . . . . . . 16
3.1.3 j jc2 j j j j<j jc3 j . . . . . . . . . . . . . 18
3.1.4 j j j j jc3 j . . . . . . . . . . . . . . . . . .18
3.2 To control the magnetic bit by DC . . . . . . . . . 23
3.3 The relationship between rise time and critical current density . . . . . . 26
3.4 The relationship between fall time and critical density . . . . . . . . . . . 31
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . 35
Reference . . . . . . . . . . . . . . . . . . . . . . . . 37
dc.language.isoen
dc.subject自旋扭矩傳輸zh_TW
dc.subject磁區壁zh_TW
dc.subject缺陷zh_TW
dc.subjectspin torque transferen
dc.subjectdomain wallen
dc.subjectdefecten
dc.title有缺陷之準一維系統磁區動力學zh_TW
dc.titleDynamics of Quasi-One-Dimensional Magnetic Domain with Defectsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許仁華(Jen-Hwa Hsu),楊志信(Jyh-Shinn Yang),衛榮漢(Zung-Hang Wei)
dc.subject.keyword自旋扭矩傳輸,磁區壁,缺陷,zh_TW
dc.subject.keywordspin torque transfer,domain wall,defect,en
dc.relation.page42
dc.rights.note有償授權
dc.date.accepted2011-08-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved