Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37705
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor彭旭明(Shie-Ming Peng)
dc.contributor.authorGin-Chen Huangen
dc.contributor.author黃俊程zh_TW
dc.date.accessioned2021-06-13T15:39:36Z-
dc.date.available2013-07-16
dc.date.copyright2008-07-16
dc.date.issued2008
dc.date.submitted2008-07-08
dc.identifier.citation(1) Werner, A. A. Neuere Anschauungen auf dem Gebiete der anorganischen Chemie, 1905.
(2) Kauffman, G. B. Coord. Chem. Rev. 1973, 9, 339.
(3) Kauffman, G. B. Coord. Chem. Rev. 1973, 11, 161.
(4) Cotton, F. A.; Walton, R. A. Multiple Bonds between Metal Atoms; 2nd ed., 1993.
(5) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry; Wiley: New York, 1999.
(6) Roberts, Y. V. Encyclopedia of Inorganic Chemistry; Wiley: New York, 1994; Vol. IV.
(7) Cotton, F. A.; Curtis, N. F.; Johnson, B. G.; Robinson, W. R. Inorg. Chem. 1965, 4, 326.
(8) Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S. Science 1964, 145, 1305.
(9) Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. P. Inorg. Chem. 2003, 42, 4218.
(10) Tschitschibabin, A. E.; Zeide, O. A. Zh. Russ. Khim. Ova. 1914, 46, 1216.
(11) Schödel, H.; Näther, C.; Bock, H.; Butenschön, F. Acta Crystallogr., Sec. B 1996, 52, 842.
(12) Wu, L. P.; Field, P.; Morrissey, T.; Murphy, C.; Nogle, P.; Hathaway, B. J. Chem. Soc. Dalton Trans. 1990, 3835.
(13) Yan, E. C.; Cheng, M. C.; Tsai, M. S.; Peng, S. M. J. Chem. Soc., Chem Commun. 1994, 2377.
(14) Sheu, J. T.; Lin, C. C.; Chao, I.; Wang, C. C.; Peng, S. M. J. Chem. Soc., Chem. Commun. 1996, 315.
(15) Kuo, C. K.; Liu, P. C.; Yeh, C. Y.; Chou, C. H.; Taso, T. B.; Lee, G. H.; Peng, S. M. Chem. Eur. J. 2007, 13, 1442.
(16) Shieh, S. Y.; Chou, C. C.; Lee, G. H.; Wang, C. C.; Peng, S. M. Angew. Chem. Int. Ed. Engl. 1997, 36, 56.
(17) Chang, H. C.; Li, J. T.; Wang, C. C.; Lin, T. W.; Lee, H. C.; Lee, G. H.; Peng, S. M. Eur. J. Inorg. Chem. 1999, 1243.
(18) Lai, S. Y.; Lin, T. W.; Chen, Y. H.; Wang, C. C.; Lee, G. H.; Yang, M. H.; Leung, M. K.; Peng, S. M. J. Am. Chem. Soc. 1999, 121, 250.
(19) Chen, Y. H.; Lee, C. C.; Wang, C. C.; Lee, G. H.; Lai, S. Y.; Li, F. Y.; Mou, C. Y.; Peng, S. M. J. Chem. Soc., Chem. Commun. 1999, 1667.
(20) Ismayilov, R. H.; Wang, W. Z.; Wang, R. R.; Yeh, C. Y.; Lee, G. H.; Peng, S. M. J. Chem. Soc., Chem. Commun. 2007, 1121.
(21) Peng, S. M.; Wang, C. C.; Chiang, Y. L.; Chen, Y. H.; Li, F. Y.; Mou, C. Y.; Leung, M. K. J. Mag. Mag. Mater. 2000, 209, 80.
(22) Gatteschi, D.; Mealli, C.; Sacconi, L. J. Am. Chem. Soc. 1973, 95, 2736.
(23) Rohmer, M.-M.; Liu, P.-C.; Lin, J.-C.; M-J., C.; C-H., L.; Bénard, M.; Lopez, X.; Peng, S.-M. Angew. Chem. Int. Ed. Engl. 2007, 46, 3533.
(24) Liu, P.-C.; G-H., L.; Peng, S.-M.; Bénard, M.; Rohmer, M.-M. Inorg. Chem. 2007, 46, 9602.
(25) Nippe, M.; Berry, J. F. J. Am. Chem. Soc. 2007, 128, 5308.
(26) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. J.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. In Gaussian 03; C.02 ed.; Gaussian, Inc.: Wallingford, CT, 2004.
(27) Huang, K. S.; Kurth, M. J. J. Org. Chem. 2002, 2382.
(28) Mitchell, R. W.; Spencer, A.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1973, 846.
(29) Otwinowski, Z.; Minor, W.; Carter, C. W., Jr, Sweet, R. M., Eds.; Academic Press: San Diego, 2005; Vol. 276.: 2005.
(30) Blessing, R. H. Acta Crystallogr., Sec. A 1955, 33.
(31) Sheldrick, G. M.; University of Göttingen: Göttingen, Germany, 1997.
(32) Chien, C.-H.; Chang, J.-C.; Yeh, C.-Y.; Lee, G.-H.; Fang, J.-M.; Song, Y.; Peng, S.-M. J. Chem. Soc., Dalton Trans. 2006, 3249.
(33) Chien, C.-H.; Chang, J.-C.; Yeh, C.-Y.; Lee, G.-H.; Fang, J.-M.; Song, Y.; Peng, S.-M. J. Chem. Soc., Dalton Trans. 2006, 2106.
(34) Kiehl, P.; Rohmer, M. M.; Bénard, M. Inorg. Chem. 2006, 49, 3932.
(35) Kiehl, P.; Rohmer, M. M.; Bénard, M. Inorg. Chem. 2004, 43, 3151.
(36) Clérac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Murillo, C. A.; Wang, X. J. Chem. Soc., Dalton Trans. 2001, 386.
(37) Cotton, F. A.; Frenz, B. A.; Pedersen, E.; Webb, T. R. Inorg. Chem. 1975, 14, 391.
(38) Chakravarty, K.; Cotton, F. A.; Tocher, D. A. J. Am. Chem. Soc. 1984, 106, 6409.
(39) Benbellat, N.; Rohmer, M. M.; Bénard, M. J. Chem. Soc., Chem. Commun. 2001, 2368.
(40) Pantazis, D. A.; McGrady, J. E. J. Am. Chem. Soc. 2006, 128, 4128.
(41) Miskowski, V. M.; Gray, H. B. Inorg. Chem. 1988, 27, 2501.
(42) Norman, J. J. G.; Renzoni, G. E.; Case, D. A. J. Am. Chem. Soc. 1979, 101, 5256.
(43) Chisholm, M. H.; Christou, G.; Folting, K.; Huffman, J. C.; James, C. A.; Samuels, J. A.; Wesemann, J. L.; Woodruff, W. A. Inorg. Chem. 1996, 35, 3643.
(44) Tesler, J.; Drago, R. S. Inorg. Chem. 1984, 23, 3114.
(45) Tesler, J.; Drago, R. S. Inorg. Chem. 1985, 24, 4765.
(46) O'Connor, C. J. Prog. Inorg. Chem. 1982, 29, 203.
(47) Brackett, G. C.; Richards, P. L.; Caughey, W. S. J. Chem. Phys. 1971, 54, 4383.
(48) Fu, M.-D.; Chen, I.-W.-P.; Lu, H.-C.; Kuo, C.-T.; Tseng, W.-H.; Chen, C.-h. J. Phys. Chem. C. 2007, 111, 11450.
(49) Li, X.; He, J.; Hihath, J.; Xu, B.; Lindsay, S. M.; Tao, N. J. Am. Chem. Soc. 2006, 128, 2135.
(50) Yanson, A. I.; Rubio-Bollinger, G.; van den Brom, H. E.; Agrait, N.; van Ruitenbeek, J. M. Nature. 1998, 395, 783.
(51) Ohnishi, H.; Kondo, Y.; Takayanagi, K. Nature 1998, 395, 780.
(52) Xu, B.; Tao, N. J. Science 2003, 301, 1221.
(53) Wagaw, S.; Buchwald, S. L. J. Org. Chem. 1996, 61, 7240.
(54) Lopez, X.; Huang, M. Y.; Huang, G. C.; Peng, S. M.; Li, F. Y.; Benard, M.; Rohmer, M. M. Inorg. Chem. 2006, 45, 9075-9084.
(55) Yamaguchi, K.; Fukui, H.; T., F. Chem. lett. 1986, 625.
(56) Gutiérrez, L.; Alzuet, G.; Borrás, J.; Castiňeiras, A.; A., R.-F. Inorg. Chem. 2001, 40, 3089.
(57) Hay, P. J.; Thibeaut, J. C.; Hoffman, R. J. Am. Chem. Soc. 1975, 97, 4884.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37705-
dc.description.abstractOur group was devoted to the research of metal string complexes. We believe that the thinnest metal wire may be applied to practical applications in the future. The dipyridylamide ligand (Hdpa) has been used to stabilize homo-trinuclear metal string complexes. A series of homo-trinuclear M3(dpa)4X2 complexes have been studied in detail in past decades. A new type of heterometallic framework, combining in a linear arrangement with a ruthenium dimer and a third metal atom, either Cu or Ni has been synthesized and studied thoroughly. The metal frameworks of Ru2Cu(dpa)4Cl2, of its mono-oxidized counterpart [Ru2Cu(dpa)4Cl2]PF6, and of their nickel homologues, Ru2Ni(dpa)4Cl2 and [Ru2Ni(dpa)4Cl2]PF6 are nonsymmetric, in spite of a severe disorder affecting the metal positions. This nonsymmetric structure was further confirmed by NMR spectroscopy. The [Ru2M]6+ framework of Ru2Cu(dpa)4Cl2 and Ru2Ni(dpa)4Cl2 was shown from spectroelectrochemical analysis and DFT calculations to exist in the form of a mixed-valent [Ru2]5+ moiety coupled to a formally M+ hetero-metal. The magnetism and redox chemistry were also studied in this work.
The study of naphthyridyl modified polypyridylamide analogues is a new direction in our group. Many interesting properties have been unveiled in our recent research. Naphthyridyldiamide ligand is one of the analogues. Studying the metal complexes formed with this ligand helps us to understand more about the characterizations of these series ligands. Ni4(DAniDANy)4 and [Ni4(DAniDANy)4]PF6 has been synthesized. Structure analysis of [Ni4(DAniDANy)4]PF6 shows the decreasing of metal-metal bond lengths which corresponds to oxidation of the metal-based sigma anti-bonding. The strong IVCT band in UV-VIS spectrum was assigned to the one electron excitation from the occupied σ* to the unoccupied σ* orbital. EPR spectrum and magnetic susceptibility study shows that this complex has one unpaired electron and located on metal ions. DFT study on both complex Ni4(DAniDANy)4 and [Ni4(DAniDANy)4]PF6 is consistent with the experimental result.
Hetero asymmetric tetranuclear Ru2Ni2(DAniDANy)3(OAc)2Cl was successfully synthesized. The UV-VIS spectrum of Ru2Ni2(DAniDANy)3(OAc)2Cl shows IVCT band at 890nm which is similar with [Ru2]5+. Magnetic and DFT studies show that the three unpaired electrons delocalized over the ruthenium ions. OTTLE study shows that the IVCT band does not disappear in both oxidation and reduction process. The reduction and oxidation processes occur on the Ni2 moiety. We also synthesized the [Ru2Ni2(DAniDANy)3(OAc)2]PF6. Structural analysis shows that the removal of axial ligand results the contraction of Ni-Ni, Ni-Ru and Ru-Ru distances. This can be explained by the fact that the d orbital energy of Ru2 and Ni2 is different. The coordinated chloride will raise the energy of Ru2 and causes the poor overlap between dimers. When the axial chloride was removed, the overlap of σ orbitals becomes better and the bonding interaction enhances.
The cluster compounds, ferromagnetic Co3(DAniDANy)3 and antiferromagnetic Ru2(Hdphdany)2(dphdany)2, were studied due to its interesting magnetic ehavior. The magnetic orbitals of Co3(DAniDANy)3 and Ru2(dphdany)2(Hdphdany)2 consist of metal-ligand antibonding. In both complexes, the ligand directs the antiferromagnetic coupling via superexchange between neighboring nitrogen atoms. The origin of the observed ferromagnetism in Co3(DAniDANy)3 is due to the orthogonal magnetic orbitals of central and terminal Co ions.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:39:36Z (GMT). No. of bitstreams: 1
ntu-97-D94223022-1.pdf: 18650233 bytes, checksum: e1f9815b50de74429efce47366191aa7 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsContents
Abstract i
Chapter 1 : Introduction 1
1-1 Metal-metal bonding theory 2
1-1-1 Bonding mode in dinuclear case 2
1-1-2 Bonding interaction in dinuclear case 3
1-1-3 Extension from dinuclear to multinuclear case 6
1-2 Metal String complexes 10
1-2-1 Oligo–α–pyridylamine ligand 10
1-2-2 Fine tuning of oligo–α–pyridylamine : Naphthyridine Substituent 12
1-3 Asymmetric heterometal string complexes 15
1-4 Research direction 16
Chapter 2 : Experimental Section 17
2-1 Techniques 17
2-2 Sample preparation 19
Chapter 3 : Asymmetric Trinuclear Hetero-Metal String Complexes 34
3-1 Synthesis 34
3-2 Crystal structures 35
3-3 NMR spectrum 41
3-4 Electrochemistry 42
3-5 Computational study 45
3-6 Near-IR spectra 49
3-7 Magnetic measurements and EPR spectrum 52
3-8 Conductivity study 58
3-9 Conclusions 61
Chapter 4 : Metal Complexes with Naphthyridine-Functionalized Amide Ligands 63
4-1 Synthesis 63
4-2 Ni4(DAniDANy)4 and [Ni4(DAniDANy)4]PF6 66
4-2-1 Comparison of ligands 66
4-2-2 Crystal Structures 67
4-2-3 Electrochemistry study 69
4-2-4 EPR spectrum and magnetism 72
4-2-5 DFT study 73
4-3 Ru2Ni2(DAniDANy)3(OAc)2Cl and [Ru2Ni2(DAniDANy)3(OAc)2]PF6 76
4-3-1 Crystal structures 76
4-3-2 Electrochemistry 78
4-3-3 Magnetism 82
4-3-4 DFT study 84
4-4 Trinuclear Co3(DAniDANy)3 87
4-4-1 Crystal structure 87
4-4-2 Electrochemistry 89
4-4-3 Magnetism 90
4-4-4 DFT study 92
4-5 Dinuclear Ru2(Hdphdany)2(dphdany)2 99
4-5-1 Crystal structure 99
4-5-2 Electrochemistry 100
4-5-3 Magnetism and 1H NMR 101
4-5-4 Computational study 103
4-6 Conclusions 110
References 112
APPEDIX
dc.language.isoen
dc.subject分子導線zh_TW
dc.subject金屬線zh_TW
dc.subject導電度zh_TW
dc.subject金屬串zh_TW
dc.subject無機錯合物zh_TW
dc.subjectinorgnaic compounden
dc.subjectmetal wireen
dc.subjectconductanceen
dc.subjectmolecule wireen
dc.subjectmetal stringen
dc.title不對稱三核混金屬串與萘啶二胺配基之系列錯合物之合成、結構與物理性質研究zh_TW
dc.titleSynthesis, Crystal Structures, Physical Properties and DFT Studies of a Series of Linear Asymmetric Hetero-Trinuclear Complexes and Metal Clusters with Naphthyridine-Functionalized Amide Ligandsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee金必耀(Bih-Yaw Jin),陳俊顯(Chun-hsien Chen),葉鎮宇(Chen-Yu Yeh),王 瑜(Wang Yu),瑪麗亞馬德琳 羅曼(Rohmer Marie-Maleleine),比那 馬克(Marc Benard)
dc.subject.keyword導電度,無機錯合物,分子導線,金屬串,金屬線,zh_TW
dc.subject.keywordconductance,inorgnaic compound,molecule wire,metal string,metal wire,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2008-07-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
18.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved