Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37704
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉興華
dc.contributor.authorJing-Ren Tsaien
dc.contributor.author蔡景任zh_TW
dc.date.accessioned2021-06-13T15:39:33Z-
dc.date.available2013-08-13
dc.date.copyright2008-08-13
dc.date.issued2008
dc.date.submitted2008-07-08
dc.identifier.citationAdachi, T., Yasuda, K., Mori, C., Yoshinaga, M., Aoki, N., Tsujimoto, G., and Tsuda, K. (2005). Promoting insulin secretion in pancreatic islets by means of bisphenol A and nonylphenol via intracellular estrogen receptors. Food Chem Toxicol 43, 713-719.
Alonso-Magdalena, P., Morimoto, S., Ripoll, C., Fuentes, E., and Nadal, A. (2006). The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ Health Perspect 114, 106-112.
Amiel, S. A., Caprio, S., Sherwin, R. S., Plewe, G., Haymond, M. W., and Tamborlane, W. V. (1991). Insulin resistance of puberty: a defect restricted to peripheral glucose metabolism. J Clin Endocrinol Metab 72, 277-282.
Antizar-Ladislao, B. (2008). Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. a review. b_antizar@hotmail.com. Environ Int 34, 292-308.
Azenha, M., and Vasconcelos, M. T. (2002). Butyltin compounds in Portuguese wines. J Agric Food Chem 50, 2713-2716.
Benes, C., Roisin, M. P., Van Tan, H., Creuzet, C., Miyazaki, J., and Fagard, R. (1998). Rapid activation and nuclear translocation of mitogen-activated protein kinases in response to physiological concentration of glucose in the MIN6 pancreatic beta cell line. J Biol Chem 273, 15507-15513.
Cantley, L. C. (2002). The phosphoinositide 3-kinase pathway. Science 296, 1655-1657.
Chen, Y. W., Huang, C. F., Tsai, K. S., Yang, R. S., Yen, C. C., Yang, C. Y., Lin-Shiau, S. Y., and Liu, S. H. (2006a). Methylmercury induces pancreatic beta-cell apoptosis and dysfunction. Chem Res Toxicol 19, 1080-1085.
Chen, Y. W., Huang, C. F., Tsai, K. S., Yang, R. S., Yen, C. C., Yang, C. Y., Lin-Shiau, S. Y., and Liu, S. H. (2006b). The role of phosphoinositide 3-kinase/Akt signaling in low-dose mercury-induced mouse pancreatic beta-cell dysfunction in vitro and in vivo. Diabetes 55, 1614-1624.
Chien, L. C., Hung, T. C., Choang, K. Y., Yeh, C. Y., Meng, P. J., Shieh, M. J., and Ha, B. C. (2002). Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Sci Total Environ 285, 177-185.
Cooke, G. M., Forsyth, D. S., Bondy, G. S., Tachon, R., Tague, B., and Coady, L. (2008). Organotin speciation and tissue distribution in rat dams, fetuses, and neonates following oral administration of tributyltin chloride. J Toxicol Environ Health A 71, 384-395.
Coronado-Gonzalez, J. A., Del Razo, L. M., Garcia-Vargas, G., Sanmiguel-Salazar, F., and Escobedo-de la Pena, J. (2007). Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico. Environ Res 104, 383-389.
Dezaki, K., Kageyama, H., Seki, M., Shioda, S., and Yada, T. (2008). Neuropeptide W in the rat pancreas: potentiation of glucose-induced insulin release and Ca2+ influx through L-type Ca2+ channels in beta-cells and localization in islets. Regul Pept 145, 153-158.
Diaz-Villasenor, A., Burns, A. L., Hiriart, M., Cebrian, M. E., and Ostrosky-Wegman, P. (2007). Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus. Toxicol Appl Pharmacol 225, 123-133.
Duchen, M. R., Smith, P. A., and Ashcroft, F. M. (1993). Substrate-dependent changes in mitochondrial function, intracellular free calcium concentration and membrane channels in pancreatic beta-cells. Biochem J 294 ( Pt 1), 35-42.
Elghazi, L., Balcazar, N., and Bernal-Mizrachi, E. (2006). Emerging role of protein kinase B/Akt signaling in pancreatic beta-cell mass and function. Int J Biochem Cell Biol 38, 157-163.
Eliasson, L., Renstrom, E., Ammala, C., Berggren, P. O., Bertorello, A. M., Bokvist, K., Chibalin, A., Deeney, J. T., Flatt, P. R., Gabel, J., Gromada, J., Larsson, O., Lindstrom, P., Rhodes, C. J., and Rorsman, P. (1996). PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic beta cells. Science 271, 813-815.
Fei, H., Zhao, B., Zhao, S., and Wang, Q. (2008). Requirements of calcium fluxes and ERK kinase activation for glucose- and interleukin-1beta-induced beta-cell apoptosis. Mol Cell Biochem.
Frodin, M., Sekine, N., Roche, E., Filloux, C., Prentki, M., Wollheim, C. B., and Van Obberghen, E. (1995). Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1. J Biol Chem 270, 7882-7889.
Grankvist, K., Marklund, S. L., and Taljedal, I. B. (1981). CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199, 393-398.
Gray, E., Muller, D., Squires, P. E., Asare-Anane, H., Huang, G. C., Amiel, S., Persaud, S. J., and Jones, P. M. (2006). Activation of the extracellular calcium-sensing receptor initiates insulin secretion from human islets of Langerhans: involvement of protein kinases. J Endocrinol 190, 703-710.
Grondin, M., Marion, M., Denizeau, F., and Averill-Bates, D. A. (2007). Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Toxicol Appl Pharmacol 222, 57-68.
Ho, E., Chen, G., and Bray, T. M. (1999). Supplementation of N-acetylcysteine inhibits NFkappaB activation and protects against alloxan-induced diabetes in CD-1 mice. FASEB J 13, 1845-1854.
Hollingsworth, D. R. (1983). Alterations of maternal metabolism in normal and diabetic pregnancies: differences in insulin-dependent, non-insulin-dependent, and gestational diabetes. Am J Obstet Gynecol 146, 417-429.
Inadera, H., and Shimomura, A. (2005). Environmental chemical tributyltin augments adipocyte differentiation. Toxicol Lett 159, 226-234.
Jurkiewicz, M., Averill-Bates, D. A., Marion, M., and Denizeau, F. (2004). Involvement of mitochondrial and death receptor pathways in tributyltin-induced apoptosis in rat hepatocytes. Biochim Biophys Acta 1693, 15-27.
Kajimoto, Y., and Kaneto, H. (2004). Role of oxidative stress in pancreatic beta-cell dysfunction. Ann N Y Acad Sci 1011, 168-176.
Kaneto, H., Katakami, N., Kawamori, D., Miyatsuka, T., Sakamoto, K., Matsuoka, T. A., Matsuhisa, M., and Yamasaki, Y. (2007a). Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal 9, 355-366.
Kaneto, H., Kawamori, D., Nakatani, Y., Gorogawa, S., and Matsuoka, T. A. (2004). Oxidative stress and the JNK pathway as a potential therapeutic target for diabetes. Drug News Perspect 17, 447-453.
Kaneto, H., Matsuoka, T. A., Katakami, N., Kawamori, D., Miyatsuka, T., Yoshiuchi, K., Yasuda, T., Sakamoto, K., Yamasaki, Y., and Matsuhisa, M. (2007b). Oxidative stress and the JNK pathway are involved in the development of type 1 and type 2 diabetes. Curr Mol Med 7, 674-686.
Kaneto, H., Nakatani, Y., Kawamori, D., Miyatsuka, T., Matsuoka, T. A., Matsuhisa, M., and Yamasaki, Y. (2006). Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance. Int J Biochem Cell Biol 38, 782-793.
Khoo, S., and Cobb, M. H. (1997). Activation of mitogen-activating protein kinase by glucose is not required for insulin secretion. Proc Natl Acad Sci U S A 94, 5599-5604.
Kooptiwut, S., Semprasert, N., and Chearskul, S. (2007). Estrogen increases glucose-induced insulin secretion from mouse pancreatic islets cultured in a prolonged high glucose condition. J Med Assoc Thai 90, 956-961.
Krajnc, E. I., Wester, P. W., Loeber, J. G., van Leeuwen, F. X., Vos, J. G., Vaessen, H. A., and van der Heijden, C. A. (1984). Toxicity of bis(tri-n-butyltin)oxide in the rat. I. Short-term effects on general parameters and on the endocrine and lymphoid systems. Toxicol Appl Pharmacol 75, 363-386.
Lee, I. S., Hur, E. M., Suh, B. C., Kim, M. H., Koh, D. S., Rhee, I. J., Ha, H., and Kim, K. T. (2003). Protein kinase A- and C-induced insulin release from Ca2+ -insensitive pools. Cell Signal 15, 529-537.
Lenzen, S., Drinkgern, J., and Tiedge, M. (1996). Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20, 463-466.
Liu, H., Guo, Z., Xu, L., and Hsu, S. (2008). Protective effect of green tea polyphenols on tributyltin-induced oxidative damage detected by in vivo and in vitro models. Environ Toxicol 23, 77-83.
Liu, H. G., and Xu, L. H. (2007). Garlic oil prevents tributyltin-induced oxidative damage in vivo and in vitro. J Food Prot 70, 716-721.
Livingstone, C., and Collison, M. (2002). Sex steroids and insulin resistance. Clin Sci (Lond) 102, 151-166.
Masuda, Y., Aiuchi, T., Mihara, S., Nakajo, S., and Nakaya, K. (2007). Increase in intracellular Ca(2+) concentrations and the corresponding intracellular acidification are early steps for induction of apoptosis by geranylgeraniol in HL60 cells. Biol Pharm Bull 30, 880-884.
Matsui, H., Wada, O., Manabe, S., Ushijima, Y., and Fujikura, T. (1984). Species difference in sensitivity to the diabetogenic action of triphenyltin hydroxide. Experientia 40, 377-378.
Miura, Y., Kato, M., Ogino, K., and Matsui, H. (1997). Impaired cytosolic Ca2+ response to glucose and gastric inhibitory polypeptide in pancreatic beta-cells from triphenyltin-induced diabetic hamster. Endocrinology 138, 2769-2775.
Miura, Y., and Matsui, H. (2006). Triphenyltin impairs a protein kinase A (PKA)-dependent increase of cytosolic Na+ and Ca2+ and PKA-independent increase of cytosolic Ca2+ associated with insulin secretion in hamster pancreatic beta-cells. Toxicol Appl Pharmacol 216, 363-372.
Miyazaki, Y., Kawano, H., Yoshida, T., Miyamoto, S., Hokamaki, J., Nagayoshi, Y., Yamabe, H., Nakamura, H., Yodoi, J., and Ogawa, H. (2007). Pancreatic B-cell function is altered by oxidative stress induced by acute hyperglycaemia. Diabet Med 24, 154-160.
Morcillo, E. J., and Cortijo, J. (1999). Species differences in the responses of pulmonary vascular preparations to 5-hydroxytryptamine. Therapie 54, 93-97.
Nadal, A., Ropero, A. B., Fuentes, E., Soria, B., and Ripoll, C. (2004). Estrogen and xenoestrogen actions on endocrine pancreas: from ion channel modulation to activation of nuclear function. Steroids 69, 531-536.
Nadal, A., Ropero, A. B., Laribi, O., Maillet, M., Fuentes, E., and Soria, B. (2000). Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor alpha and estrogen receptor beta. Proc Natl Acad Sci U S A 97, 11603-11608.
Nakatsu, Y., Kotake, Y., and Ohta, S. (2007). Concentration dependence of the mechanisms of tributyltin-induced apoptosis. Toxicol Sci 97, 438-447.
Oberdorster, E., and McClellan-Green, P. (2002). Mechanisms of imposex induction in the mud snail, Ilyanassa obsoleta: TBT as a neurotoxin and aromatase inhibitor. Mar Environ Res 54, 715-718.
Penninks, A. H. (1993). The evaluation of data-derived safety factors for bis(tri-n-butyltin)oxide. Food Addit Contam 10, 351-361.
Phillips, A. O., and Steadman, R. (2002). Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury. Histol Histopathol 17, 247-252.
Pi, J., Bai, Y., Zhang, Q., Wong, V., Floering, L. M., Daniel, K., Reece, J. M., Deeney, J. T., Andersen, M. E., Corkey, B. E., and Collins, S. (2007). Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56, 1783-1791.
Piro, S., Anello, M., Di Pietro, C., Lizzio, M. N., Patane, G., Rabuazzo, A. M., Vigneri, R., Purrello, M., and Purrello, F. (2002). Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress. Metabolism 51, 1340-1347.
Rabinovitch, A., Suarez-Pinzon, W. L., Strynadka, K., Lakey, J. R., and Rajotte, R. V. (1996). Human pancreatic islet beta-cell destruction by cytokines involves oxygen free radicals and aldehyde production. J Clin Endocrinol Metab 81, 3197-3202.
Reader, S., Moutardier, V., and Denizeau, F. (1999). Tributyltin triggers apoptosis in trout hepatocytes: the role of Ca2+, protein kinase C and proteases. Biochim Biophys Acta 1448, 473-485.
Shi, H., Hudson, L. G., and Liu, K. J. (2004). Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic Biol Med 37, 582-593.
Smith, P. A., Proks, P., and Moorhouse, A. (1999). Direct effects of tolbutamide on mitochondrial function, intracellular Ca2+ and exocytosis in pancreatic beta-cells. Pflugers Arch 437, 577-588.
Snoeij, N. J., van Iersel, A. A., Penninks, A. H., and Seinen, W. (1985). Toxicity of triorganotin compounds: comparative in vivo studies with a series of trialkyltin compounds and triphenyltin chloride in male rats. Toxicol Appl Pharmacol 81, 274-286.
Tian, Y. A., Johnson, G., and Ashcroft, S. J. (1998). Sulfonylureas enhance exocytosis from pancreatic beta-cells by a mechanism that does not involve direct activation of protein kinase C. Diabetes 47, 1722-1726.
Tiedge, M., Lortz, S., Munday, R., and Lenzen, S. (1999). Protection against the co-operative toxicity of nitric oxide and oxygen free radicals by overexpression of antioxidant enzymes in bioengineered insulin-producing RINm5F cells. Diabetologia 42, 849-855.
Toda, N., and Nakanishi-Toda, M. (2007). Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy. Prog Retin Eye Res 26, 205-238.
Tsuda, T., Inoue, T., Kojima, M., and Aoki, S. (1995). Daily intakes of tributyltin and triphenyltin compounds from meals. J AOAC Int 78, 941-943.
Vos, J. G., de Klerk, A., Krajnc, E. I., Kruizinga, W., van Ommen, B., and Rozing, J. (1984). Toxicity of bis(tri-n-butyltin)oxide in the rat. II. Suppression of thymus-dependent immune responses and of parameters of nonspecific resistance after short-term exposure. Toxicol Appl Pharmacol 75, 387-408.
Wan, Q. F., Dong, Y., Yang, H., Lou, X., Ding, J., and Xu, T. (2004). Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+. J Gen Physiol 124, 653-662.
Wang, S. F., Yen, J. C., Yin, P. H., Chi, C. W., and Lee, H. C. (2008). Involvement of oxidative stress-activated JNK signaling in the methamphetamine-induced cell death of human SH-SY5Y cells. Toxicology 246, 234-241.
Whalen, M. M., Loganathan, B. G., and Kannan, K. (1999). Immunotoxicity of environmentally relevant concentrations of butyltins on human natural killer cells in vitro. Environ Res 81, 108-116.
Yen, C. C., Lu, F. J., Huang, C. F., Chen, W. K., Liu, S. H., and Lin-Shiau, S. Y. (2007). The diabetogenic effects of the combination of humic acid and arsenic: in vitro and in vivo studies. Toxicol Lett 172, 91-105.
Yu, Z. P., Matsuoka, M., Wispriyono, B., Iryo, Y., and Igisu, H. (2000). Activation of mitogen-activated protein kinases by tributyltin in CCRF-CEM cells: role of intracellular Ca(2+). Toxicol Appl Pharmacol 168, 200-207.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37704-
dc.description.abstract三丁基錫 (tributyltin,TBT) 是廣泛的環境物染物。文獻指出TBT會造成哺乳類動物的神經毒性、肝毒性、皮膚、免疫毒性及內分泌失調,但對胰島細胞及糖尿病的研究目前尚不清楚,近年來已有報告指出另一有機錫化合物,三苯基錫 (triphenyltin,TPT) 會造成動物模式中高血糖及胰島素分泌減少的症狀,但機轉不明,因此本研究目的在探討TBT對胰島細胞的功能影響、細胞毒性及血糖調控作用並釐清其機制。
研究結果顯示RIN-m5F cells (Rat β-cell line) 在處理較低劑量TBT (0.1 and 0.2 μM) 會刺激胰島素分泌的現象,同時觀察到細胞內鈣離子增加和及PKC活化。N-acetylcystein (NAC,抗氧化劑)、BAPTA/AM (內鈣螯合劑)、Ro32-0432 (PKC抑制劑) 及ICI182780 (雌激素受體拮抗劑) 可以回復TBT造成的胰島素分泌作用。另一方面處理較高劑量的TBT (0.5 and 1 μM) 24 hr後,TBT會造成細胞自體凋亡 (apoptosis)、ROS生成、JNK磷酸化、caspase-3及cleaved PARP活性表現。給予NAC (抗氧化劑)、SP600125 (JNK抑制劑) 及BAPTA/AM (內鈣螯合劑) 可以降低TBT所誘導的細胞自體凋亡及JNK的磷酸化。此外,我們觀察口服餵食TBT (0.025、0.25 mg/kg/day) 實驗小鼠2-4週,發現會有降低血漿胰島素含量、高血糖現象、脂質過氧化物產生及葡萄糖耐受性不良。同時,曝露TBT的實驗小鼠所分離出的胰島細胞 (islets) 會出現胰島素分泌降低現象。NAC (抗氧化劑) 可以改善TBT所造成的反應。
綜合上述結果,較低劑量TBT所造成胰島素分泌作用是透過ROS、Ca2+/PKC訊號傳導或雌激素受體訊號傳導。另一方面,較高劑量的TBT造成β-cells功能喪失、細胞自體凋亡是經由ROS或Ca2+調控JNK的磷酸化、caspase-3活性增加及cleaved PARP表現的訊息傳導路徑。此外,動物實驗證實TBT所誘導的氧化壓力扮演一個很重要的角色。
zh_TW
dc.description.abstractTributyltin (TBT) is a widespread environmental pollutant. TBT causes neurotoxicity, hepatotoxicity, skin toxicity and immunotoxicity as well as impaired endocrine regulation. However, the pathophysiological effect of TBT on the function of pancreaticβ-cells remains unknown. It has been reported that triphenyltin (TPT), an other organotin compound, could induce hyperglycemia with decreased insulin secretion in vivo, but its mechanism is still unclear. The aim of this study is designed to investigate the effects and mechanisms of TBT on the function of pancreatic β-cells and cell viability and blood glucose regulation.
Submicromolar-concentration TBT (0.1 – 1 μM) contains bi-phasic effects on β-cells. 0.1 and 0.2 μM TBT increased insulin secretion, intracellular Ca2+ and stimulated PKC activation in β-cell derived RIN-m5f cells. Antioxidant N-acetylcysteine (NAC), intracellular Ca2+ chelator BAPTA/AM, PKC inhibitor Ro32-0432 and estrogen receptor antagonist ICI182780 significantly reversed TBT-induced increase of insulin secretion. On the other hand, the cell viability and insulin secretion were significantly reduced at 24 hr after 0.5 and 1 μM TBT treatment. We found that higher-dose TBT triggered cell apoptosis, ROS production, phosphorylation of JNK, increase caspase-3 activity and cleaved poly-ADP-ribose polymerase (PARP) expression. Antioxidant NAC, JNK inhibitor SP600125 and intracellular Ca2+ chelator BAPTA/AM prevented TBT-induced cell apoptosis and JNK phosphorylation. We next observed that 2- or 4-week oral exposure of TBT (0.025 and 0.25 mg/kg/day) to mice, significantly caused the decrease in plasma insulin and displayed the elevation of blood glucose and plasma lipid peroxidation and glucose intolerance. Insulin secretion was decrease in islets isolated from TBT-exposed mice. NAC effectively antagonized TBT-induced responses.
In conclusion, these results indicate that lower-dose TBT enhanced insulin secretion from pancreatic β-cells, via ROS regulation or Ca2+/PKC pathway or estrogen receptor. On the other hand, the higher-dose TBT triggered pancreatic β-cells dysfunction and apoptosis via ROS or Ca2+/JNK/caspase-3/cleaved PARP signaling pathway. Moreover, oxidative stress may play an important role in TBT-induced responses in vivo.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:39:33Z (GMT). No. of bitstreams: 1
ntu-97-R95447008-1.pdf: 1366155 bytes, checksum: aeba057bc3e5575f4974090056a5504a (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要 ……………………………………………………………1
英文摘要 ……………………………………………………………3
縮寫表 ………………………………………………………………5
第一章 前言
1.1 三丁基錫 (tributyltin,TBT) 之簡介……………… 6
1.2 糖尿病與TBT之研究背景 ………………………………8
1.3 影響胰島素分泌可能的分子機制 ………………………9
1.4 研究目的 …………………………………………………13
第二章 材料與方法
2.1 小鼠胰島細胞分離 ……………………………………14
2.2 細胞培養 …………………………………………………14
2.3 細胞存活率試驗 …………………………………………15
2.4 胰島素分泌試驗 …………………………………………15
2.5 細胞內ROS含量測定 ……………………………………16
2.6 細胞內Ca2+測定 ………………………………………16
2.7 細胞自體凋亡與細胞壞死測試 …………………………17
2.8 Caspase-3 活性測試 ……………………………………17
2.9 蛋白質分析-西方點墨法…………………………………17
2.10 動物處理……………………………………………………20
2.11 血糖值之測定………………………………………………21
2.12 口服葡萄糖耐受性測試……………………………………22
2.13 脂質過氧化測試……………………………………………22
2.14 實驗數據之統計……………………………………………22
第三章 結果
3.1 三丁基錫 (tributyltin,TBT) 對細胞毒性影響及其劑量
的選擇 …………………………………………………23
3.2 較低劑量TBT對胰島素分泌的影響及其機轉……………25
3.3 較高劑量TBT造成細胞毒性的作用機轉…………………30
3.4 TBT對活體的影響 (in vivo test) ……………………36
第四章 討論
4.1 較低劑量TBT促進胰島素分泌的角色……………………40
4.2 較高劑量TBT造成細胞毒性的角色………………………42
4.3 TBT在活體測試影響及其角色 …………………………44
4.4 結論 ………………………………………………………45
參考文獻 ……………………………………………………………47
圖表 …………………………………………………………………54
dc.language.isozh-TW
dc.subject三丁基錫zh_TW
dc.subject糖尿病zh_TW
dc.subject細胞凋亡zh_TW
dc.subject胰島素分泌zh_TW
dc.subject氧化性壓力zh_TW
dc.subjectTBTen
dc.subjectinsulin secretionen
dc.subjectapoptosisen
dc.subjectROSen
dc.subjectdiabetesen
dc.title三丁基錫影響胰島素分泌及血糖調控之細胞及動物模式探討zh_TW
dc.titleIn vitro and in vivo effects of tributyltin on insulin secretion and blood glucose regulationen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭水銀,楊榮森
dc.subject.keyword三丁基錫,氧化性壓力,胰島素分泌,細胞凋亡,糖尿病,zh_TW
dc.subject.keywordTBT,ROS,insulin secretion,apoptosis,diabetes,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2008-07-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved