Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37701
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李明學(Ming-Shyue Lee)
dc.contributor.authorShang-Ru Wuen
dc.contributor.author吳尚儒zh_TW
dc.date.accessioned2021-06-13T15:39:24Z-
dc.date.available2009-08-13
dc.date.copyright2008-08-13
dc.date.issued2008
dc.date.submitted2008-07-09
dc.identifier.citationAlbini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM and McEwan RN (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47:3239-3245.
Arai Y, Yoshiki T and Yoshida O (1997) c-erbB-2 oncoprotein: a potential biomarker of advanced prostate cancer. Prostate 30:195-201.
Banyard J and Zetter BR (1998) The role of cell motility in prostate cancer. Cancer Metastasis Rev 17:449-458.
Benaud C, Dickson RB and Lin CY (2001) Regulation of the activity of matriptase on epithelial cell surfaces by a blood-derived factor. Eur J Biochem 268:1439-1447.
Benaud CM, Oberst M, Dickson RB and Lin CY (2002) Deregulated activation of matriptase in breast cancer cells. Clin Exp Metastasis 19:639-649.
Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, Shepard HM and Osborne CK (1992) Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 24:85-95.
Bernhard H, Salazar L, Schiffman K, Smorlesi A, Schmidt B, Knutson KL and Disis ML (2002) Vaccination against the HER-2/neu oncogenic protein. Endocr Relat Cancer 9:33-44.
Bonaccorsi L, Marchiani S, Muratori M, Forti G and Baldi E (2004) Gefitinib ('IRESSA', ZD1839) inhibits EGF-induced invasion in prostate cancer cells by suppressing PI3 K/AKT activation. J Cancer Res Clin Oncol 130:604-614.
Citri A and Yarden Y (2006) EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7:505-516.
Craft N, Shostak Y, Carey M and Sawyers CL (1999) A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5:280-285.
Crocker J (1989) Proliferation indices in malignant lymphomas. Clin Exp Immunol 77:299-308.
Denmeade SR, Lin XS and Isaacs JT (1996) Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 28:251-265.
Dimmeler S and Zeiher AM (2000) Akt takes center stage in angiogenesis signaling. Circ Res 86:4-5.
Eccles SA (2001) The role of c-erbB-2/HER2/neu in breast cancer progression and metastasis. J Mammary Gland Biol Neoplasia 6:393-406.
Festuccia C, Angelucci A, Gravina GL, Biordi L, Millimaggi D, Muzi P, Vicentini C and Bologna M (2005) Epidermal growth factor modulates prostate cancer cell invasiveness regulating urokinase-type plasminogen activator activity. EGF-receptor inhibition may prevent tumor cell dissemination. Thromb Haemost 93:964-975.
Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C and Gonzalez-Baron M (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193-204.
Galkin AV, Mullen L, Fox WD, Brown J, Duncan D, Moreno O, Madison EL and Agus DB (2004) CVS-3983, a selective matriptase inhibitor, suppresses the growth of androgen independent prostate tumor xenografts. Prostate 61:228-235.
Ghosh PM, Malik S, Bedolla R and Kreisberg JI (2003) Akt in prostate cancer: possible role in androgen-independence. Curr Drug Metab 4:487-496.
Goodearl A, Viehover A and Vartanian T (2001) Neuregulin-induced association of Sos Ras exchange protein with HER2(erbB2)/HER3(erbB3) receptor complexes in Schwann cells through a specific Grb2-HER2(erbB2) interaction. Dev Neurosci 23:25-30.
Grothey A, Hashizume R, Ji H, Tubb BE, Patrick CW, Jr., Yu D, Mooney EE and McCrea PD (2000) C-erbB-2/ HER-2 upregulates fascin, an actin-bundling protein associated with cell motility, in human breast cancer cell lines. Oncogene 19:4864-4875.
Horoszewicz JS, Leong SS, Chu TM, Wajsman ZL, Friedman M, Papsidero L, Kim U, Chai LS, Kakati S, Arya SK and Sandberg AA (1980) The LNCaP cell line--a new model for studies on human prostatic carcinoma. Prog Clin Biol Res 37:115-132.
Igawa T, Lin FF, Lee MS, Karan D, Batra SK and Lin MF (2002) Establishment and characterization of androgen-independent human prostate cancer LNCaP cell model. Prostate 50:222-235.
Jin X, Yagi M, Akiyama N, Hirosaki T, Higashi S, Lin CY, Dickson RB, Kitamura H and Miyazaki K (2006) Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Sci 97:1327-1334.
Johnston SR (2006) Targeting downstream effectors of epidermal growth factor receptor/HER2 in breast cancer with either farnesyltransferase inhibitors or mTOR antagonists. Int J Gynecol Cancer 16 Suppl 2:543-548.
Kataoka H, Itoh H, Hamasuna R, Meng JY and Koono M (2001) Pericellular activation of hepatocyte growth factor/scatter factor (HGF/SF) in colorectal carcinomas: roles of HGF activator (HGFA) and HGFA inhibitor type 1 (HAI-1). Hum Cell 14:83-93.
Kataoka H, Miyata S, Uchinokura S and Itoh H (2003) Roles of hepatocyte growth factor (HGF) activator and HGF activator inhibitor in the pericellular activation of HGF/scatter factor. Cancer Metastasis Rev 22:223-236.
Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS and Chung J (2001) Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J 15:1953-1962.
Kiyomiya K, Lee MS, Tseng IC, Zuo H, Barndt RJ, Johnson MD, Dickson RB and Lin CY (2006) Matriptase activation and shedding with HAI-1 is induced by steroid sex hormones in human prostate cancer cells, but not in breast cancer cells. Am J Physiol Cell Physiol 291:C40-49.
Klapper LN, Glathe S, Vaisman N, Hynes NE, Andrews GC, Sela M and Yarden Y (1999) The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc Natl Acad Sci U S A 96:4995-5000.
Klos KS, Wyszomierski SL, Sun M, Tan M, Zhou X, Li P, Yang W, Yin G, Hittelman WN and Yu D (2006) ErbB2 increases vascular endothelial growth factor protein synthesis via activation of mammalian target of rapamycin/p70S6K leading to increased angiogenesis and spontaneous metastasis of human breast cancer cells. Cancer Res 66:2028-2037.
Kobayashi H (1996) [Mechanism of tumor cell-induced extracellular matrix degradation--inhibition of cell-surface proteolytic activity might have a therapeutic effect on tumor cell invasion and metastasis]. Nippon Sanka Fujinka Gakkai Zasshi 48:623-632.
Kohn EC and Liotta LA (1995) Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res 55:1856-1862.
Lee MS, Igawa T, Yuan TC, Zhang XQ, Lin FF and Lin MF (2003) ErbB-2 signaling is involved in regulating PSA secretion in androgen-independent human prostate cancer LNCaP C-81 cells. Oncogene 22:781-796.
Lee SL, Dickson RB and Lin CY (2000) Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 275:36720-36725.
Lin CY, Tseng IC, Chou FP, Su SF, Chen YW, Johnson MD and Dickson RB (2008) Zymogen activation, inhibition, and ectodomain shedding of matriptase. Front Biosci 13:621-635.
List K, Bugge TH and Szabo R (2006) Matriptase: potent proteolysis on the cell surface. Mol Med 12:1-7.
List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, Swaim W, Engelholm LH, Behrendt N and Bugge TH (2002) Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 21:3765-3779.
List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, Murdock T, Burke B, Nielsen BS, Gutkind JS and Bugge TH (2005) Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 19:1934-1950.
Mellinghoff IK, Vivanco I, Kwon A, Tran C, Wongvipat J and Sawyers CL (2004) HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell 6:517-527.
Moasser MM (2007) The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26:6469-6487.
Morote J, de Torres I, Caceres C, Vallejo C, Schwartz S, Jr. and Reventos J (1999) Prognostic value of immunohistochemical expression of the c-erbB-2 oncoprotein in metastasic prostate cancer. Int J Cancer 84:421-425.
Oberst M, Anders J, Xie B, Singh B, Ossandon M, Johnson M, Dickson RB and Lin CY (2001) Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo. Am J Pathol 158:1301-1311.
Oberst MD, Chen LY, Kiyomiya K, Williams CA, Lee MS, Johnson MD, Dickson RB and Lin CY (2005) HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. Am J Physiol Cell Physiol 289:C462-470.
Oberst MD, Johnson MD, Dickson RB, Lin CY, Singh B, Stewart M, Williams A, al-Nafussi A, Smyth JF, Gabra H and Sellar GC (2002) Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res 8:1101-1107.
Palmieri D, Bronder JL, Herring JM, Yoneda T, Weil RJ, Stark AM, Kurek R, Vega-Valle E, Feigenbaum L, Halverson D, Vortmeyer AO, Steinberg SM, Aldape K and Steeg PS (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67:4190-4198.
Pfeil K, Eder IE, Putz T, Ramoner R, Culig Z, Ueberall F, Bartsch G and Klocker H (2004) Long-term androgen-ablation causes increased resistance to PI3K/Akt pathway inhibition in prostate cancer cells. Prostate 58:259-268.
Pu YS, Chiang HS, Lin CC, Huang CY, Huang KH and Chen J (2004) Changing trends of prostate cancer in Asia. Aging Male 7:120-132.
Rak JW, St Croix BD and Kerbel RS (1995) Consequences of angiogenesis for tumor progression, metastasis and cancer therapy. Anticancer Drugs 6:3-18.
Riese DJ, 2nd and Stern DF (1998) Specificity within the EGF family/ErbB receptor family signaling network. Bioessays 20:41-48.
Roberts PJ and Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291-3310.
Ross JS, Sheehan C, Hayner-Buchan AM, Ambros RA, Kallakury BV, Kaufman R, Fisher HA and Muraca PJ (1997) HER-2/neu gene amplification status in prostate cancer by fluorescence in situ hybridization. Hum Pathol 28:827-833.
Saleem M, Adhami VM, Zhong W, Longley BJ, Lin CY, Dickson RB, Reagan-Shaw S, Jarrard DF and Mukhtar H (2006) A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev 15:217-227.
Sanders AJ, Parr C, Davies G, Martin TA, Lane J, Mason MD and Jiang WG (2006) Genetic reduction of matriptase-1 expression is associated with a reduction in the aggressive phenotype of prostate cancer cells in vitro and in vivo. J Exp Ther Oncol 6:39-48.
Sawicki G, Matsuzaki A and Janowska-Wieczorek A (1998) Expression of the active form of MMP-2 on the surface of leukemic cells accounts for their in vitro invasion. J Cancer Res Clin Oncol 124:245-252.
Scher HI (2000) HER2 in prostate cancer--a viable target or innocent bystander? J Natl Cancer Inst 92:1866-1868.
Schlessinger J and Lemmon MA (2003) SH2 and PTB domains in tyrosine kinase signaling. Sci STKE 2003:RE12.
Shaul YD and Seger R (2007) The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773:1213-1226.
Shi YE, Torri J, Yieh L, Wellstein A, Lippman ME and Dickson RB (1993) Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res 53:1409-1415.
Shoelson SE (1997) SH2 and PTB domain interactions in tyrosine kinase signal transduction. Curr Opin Chem Biol 1:227-234.
Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A and et al. (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707-712.
Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, Liao H, Evans AT, Goudie DR, Lewis-Jones S, Arseculeratne G, Munro CS, Sergeant A, O'Regan G, Bale SJ, Compton JG, DiGiovanna JJ, Presland RB, Fleckman P and McLean WH (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38:337-342.
Spencer KS, Graus-Porta D, Leng J, Hynes NE and Klemke RL (2000) ErbB2 is necessary for induction of carcinoma cell invasion by ErbB family receptor tyrosine kinases. J Cell Biol 148:385-397.
Sundaresan S, Penuel E and Sliwkowski MX (1999) The biology of human epidermal growth factor receptor 2. Curr Oncol Rep 1:16-22.
Suzuki M, Kobayashi H, Kanayama N, Saga Y, Lin CY, Dickson RB and Terao T (2004) Inhibition of tumor invasion by genomic down-regulation of matriptase through suppression of activation of receptor-bound pro-urokinase. J Biol Chem 279:14899-14908.
Taplin ME and Balk SP (2004) Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J Cell Biochem 91:483-490.
Tessier DM and Matsumura F (2001) Increased ErbB-2 tyrosine kinase activity, MAPK phosphorylation, and cell proliferation in the prostate cancer cell line LNCaP following treatment by select pesticides. Toxicol Sci 60:38-43.
Toth M, Bernardo MM, Gervasi DC, Soloway PD, Wang Z, Bigg HF, Overall CM, DeClerck YA, Tschesche H, Cher ML, Brown S, Mobashery S and Fridman R (2000) Tissue inhibitor of metalloproteinase (TIMP)-2 acts synergistically with synthetic matrix metalloproteinase (MMP) inhibitors but not with TIMP-4 to enhance the (Membrane type 1)-MMP-dependent activation of pro-MMP-2. J Biol Chem 275:41415-41423.
Uhland K (2006) Matriptase and its putative role in cancer. Cell Mol Life Sci 63:2968-2978.
Vogel LK, Saebo M, Skjelbred CF, Abell K, Pedersen ED, Vogel U and Kure EH (2006) The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals. BMC Cancer 6:176.
Wang Y, Kreisberg JI and Ghosh PM (2007) Cross-talk between the androgen receptor and the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer. Curr Cancer Drug Targets 7:591-604.
Westin P and Bergh A (1998) Apoptosis and other mechanisms in androgen ablation treatment and androgen independent progression of prostate cancer: a review. Cancer Detect Prev 22:476-484.
Yuan TC, Lin FF, Veeramani S, Chen SJ, Earp HS, 3rd and Lin MF (2007) ErbB-2 via PYK2 upregulates the adhesive ability of androgen receptor-positive human prostate cancer cells. Oncogene 26:7552-7559.
Zhang D and Brodt P (2003) Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/Akt signaling. Oncogene 22:974-982.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37701-
dc.description.abstract隨著攝護腺癌的病期演進,原本較為良性的癌細胞會變得更加惡性,引發癌細胞轉移以及賀爾蒙非依賴型性,進而造成癌症治療上的困難。過去的臨床研究顯示,ErbB家族中的酪氨酸激酶受體,ErbB-2,在攝護腺癌與其他各種癌症的病期演變中,扮演促進細胞癌化的角色。在攝護腺癌細胞株中,ErbB-2活化程度在代表攝護腺癌晚期、賀爾蒙非依賴型的LNCaP C-81細胞中較高,而在代表攝護腺癌早期、賀爾蒙依賴型的LNCaP C-33細胞中則較低,與臨床研究結果相符合。有趣的是,第二型穿膜絲氨酸蛋白酶–間質蛋白酶,其活化程度同樣在LNCaP C-81細胞中較高,而在LNCaP C-33細胞中則較低;此結果說明間質蛋白酶在攝護腺癌的病期演變中可能扮演著重要角色,並且也暗示著ErbB-2訊息傳遞與間質蛋白酶原活化之間的關聯性。
在本研究中,我們發現在LNCaP C-33細胞中大量表現ErbB-2時,會導致間質蛋白酶的活化增加;而降低LNCaP C-81細胞中ErbB-2的表現量與活性時,則會使間質蛋白酶的活化下降。此外,我們更進一步利用PI3K與MEK的抑制劑去研究ErbB-2下游的路徑,結果顯示,在大量表現ErbB-2的LNCaP C-33細胞中,PI3K的抑制劑LY294002能夠有效抑制間質蛋白酶的活化;反之,使用MEK的抑制劑PD98059則沒有顯著的效果。另外,在細胞生長曲線、傷痕實驗、細胞遷移與細胞侵襲實驗中,我們觀察到當間質蛋白酶的表現與活化受到抑制時,大量表現ErbB-2的LNCaP C-33細胞的侵入能力會明顯降低,但其生長力與移動力卻沒有顯著變化。綜合上述結果,我們可以得知,在人類攝護腺癌細胞中,ErbB-2的訊息能透過PI3K/Akt路徑而促進間質蛋白酶的活化,並因此而增加細胞的侵襲能力。
zh_TW
dc.description.abstractDuring prostate cancer progression, cancer benign cells are able to convert into malignancy with an increase in tumorigenicity, metastasis and androgen-independence, leading to a poor prognosis. It has been shown that ErbB-2, a receptor tyrosine kinase of the ErbB family, plays a carcinogenic role in progression of a variety of cancers including prostate cancer. The tyrosine phosphorylation of ErbB-2 increases in androgen-independent LNCaP C-81 cells, compared to androgen-dependent LNCaP C-33 cells. Interestingly, activation of matriptase, a type II transmembrane serine protease, is up-regulated in LNCaP C-81 cells rather than LNCaP C-33 cells, which implies the role of matriptase in prostate cancer progression and a correlation between the ErbB-2 signaling and matriptase activation.
In the studies, we observed that the activation status of matriptase is elevated in ErbB-2-overexpressing LNCaP C-33 cells, and knockdown of endogenous ErbB-2 in LNCaP C-81 cells was able to decrease matriptase activation. In further investigation of downstream pathways, the results showed that a PI3K inhibitor LY294002 but not a MEK inhibitor PD98059 suppressed matriptase activation in ErbB-2-overexpressing LNCaP C-33 cells. Moreover, in the cell growth curve, wound healing assay, transwell migration and invasion assay, we found that matriptase knockdown in ErbB-2-overexpressing LNCaP C-33 cells was able to reduce cell invasion but had no significant effect on their cell proliferation and cell motility. Taken together, these results suggest that ErbB-2 signaling promotes matriptase zymogen activation through PI3K/Akt pathway in human prostate cancer cells, which contributes to an invasive ability.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:39:24Z (GMT). No. of bitstreams: 1
ntu-97-R95442024-1.pdf: 1873476 bytes, checksum: e83685991215c0dd869fccb0a4363b15 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書……………………………………………………i
誌謝……………………………………………………………………ii
中文摘要………………………………………………………………iii
Abstract………………………………………………………………iv
Introduction………………………………………………………… 1
Prostate cancer progression………………………………………1
c-ErbB-2 in human cancer cells………………………………… 1
c-ErbB-2 signaling contributes to prostate cancer progression……… 2
The c-ErbB-2 signaling pathways………………………………… 3
Matriptase and HAI-1 expression in normal and cancer cells…………………………………………………………………… 4
The processes of matriptase activation…………………………6
Matriptase in prostate cancer progression…………………… 7
Materials and Methods……………………………………………… 9
Results…………………………………………………………………17
Matriptase activation and ErbB-2 phosphorylation in prostate cancer progression………………………………………17
Enhanced ErbB-2 signaling increases activation of matriptase……………………………………………………………18
Knockdown of endogenous ErbB-2 decreases activation of matriptase ………………………………………………………… 18
ErbB-2 signaling involved in matriptase activation is through PI3K/Akt, but not MEK/Erk………………………………19
Identifying the role of matriptase in ErbB-2-induced prostate cancer progression……………………………………………………………20
Matriptase is not involved in ErbB-2-promoted cell proliferation of prostate cancer cells……………………… 21
Matriptase does not contribute to ErbB-2-induced cell motility and migration of prostate cancer cells……………21
Matriptase plays a role in ErbB-2-induced cell invasion of prostate cancer cells………………………………………………22
Dissucusion……………………………………………………………24
References…………………………………………………………… 43
Table of Figures
Fig. I. Signaling pathways of c-ErbB-2…………………………………29
Fig. II. The process of matriptase activation……………………………29
Fig. III. The LNCaP cell model for prostate cancer progression…………30
Fig. IV. The epitopes for M32, M69, and M19 antibodies………………30
Fig. 1. Tyrosine phosphorylation of ErbB-2, matriptase activation and HAI-1 in LNCaP C-33 and C-81 cells…………………………………………31
Fig. 2. ErbB-2 overexpression and activation of matriptase in LNCaP C-33 cells………………………………………………………………………32
Fig. 3. Effect of ErbB-2 knockdown on activation of matriptase in LNCaP C-81 cells…………………………………………………………………33
Fig. 4. Effect of LY294002 on matriptase activation in ErbB-2-overexpressing LNCaP C-33 cells……………………………………………………34
Fig. 5. Effect of PD98059 on matriptase activation of ErbB-2-overexpressing LNCaP C-33 cells………………………………………………………35
Fig. 6. Effect of a constitutively active MEK on matriptase in LNCaP C-33 cells………………………………………………………………………36
Fig. 7. Knockdown of matriptase in ErbB-2-overexpressing LNCaP C-33 and control cells……………………………………………………………37
Fig. 8. Cell growth of ErbB-2-overexpressing LNCaP C-33 cells with or without matriptase knockdown………………………………………………38
Fig. 9. Wound healing assay of ErbB-2-overexpressing LNCaP C-33 cells with or without matriptase knockdown……………………………………39
Fig. 10. Transwell migration assay of ErbB-2-overexpressing LNCaP C-33 cells with or without matriptase knockdown………………………………40
Fig. 11. Transwell invasion assay of ErbB-2-overexpressing LNCaP C-33 cells with or without matriptase knockdown…………………………………41
Context of Table
Table 1. M32, M69, and M19 antibodies recognizing matriptase and HAI-1 in immunoblottings of cell lysate………………………………………42
dc.language.isoen
dc.subject間質蛋白&#37238zh_TW
dc.subject攝護腺癌zh_TW
dc.subject細胞侵襲zh_TW
dc.subjectErbB-2zh_TW
dc.subjectprostate canceren
dc.subjectcell invasionen
dc.subjectmatriptaseen
dc.subjectErbB-2en
dc.title人類攝護腺癌細胞中ErbB-2訊息活化間質蛋白酶原之研究zh_TW
dc.titleErbB-2 Signaling Is Involved in Matriptase Zymogen Activation in Human Prostate Cancer Cellsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃銓珍(Chang-Jen Huang),詹迺立(Nei-Li Chan),李財坤(Tsai-Kun Li),黃敏銓(Min-Chuan Huang)
dc.subject.keyword攝護腺癌,ErbB-2,間質蛋白&#37238,細胞侵襲,zh_TW
dc.subject.keywordprostate cancer,ErbB-2,matriptase,cell invasion,en
dc.relation.page50
dc.rights.note有償授權
dc.date.accepted2008-07-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved