Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37690
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor貝蘇章(Soo-Chang Pei)
dc.contributor.authorChi-Chung Linen
dc.contributor.author林志忠zh_TW
dc.date.accessioned2021-06-13T15:38:51Z-
dc.date.available2008-07-10
dc.date.copyright2008-07-10
dc.date.issued2008
dc.date.submitted2008-07-09
dc.identifier.citation[1] ID. Gabor, “Theory of communication,” J, IEE, part 111, pp. 429-411, Nw. 1946.
[2] M. J. Bastiaans, “Gabor’s expansion of a signal into Gaussian elementary signals,” Proc. IEEE, vol. 68, pp. 594-598, 1980.
[3] L. Cohen and C. Lee, “Standard deviation of instantaneous frequency,” in Proc. IEEE ICASSP, 1989, pp. 2238–2241.
[4] L. Cohen, Time–Frequency Analysis. Upper Saddle River, NJ: Prentice- Hall, 1995.
[5] F. Hlawatsch, G.F. Boudreaux-Bartels, “Linear and quadratic time-frequency signal representations”, IEEE Signal Proc. Mag., vol 9, April 1992. –P. 21-67.
[6] R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the complex spectrum: the S transform,” IEEE Trans. Signal Process., vol. 44, no. 4, pp. 998–1001, Apr. 1996.
[7] McFadden, P. D., Cook, J. G., and Forster, L. M., 1999, “Decomposition of gear vibration signals by the generalised S-transform,” Mech. Syst. Signal Process., 13, 691–707.
[8] C. Pinnegar, L. Mansinha, “The S-transform with windows of arbitrary and varying shape,” Geophysics 68 (1) (2003) 381–385.
[9] C. R. Pinegar, Lalu Manshinha, “Time-local Fourier analysis with a scalable, pahse-modulated analyzing function: the S-transform with a complex window,” Signal Process., vol. 84, pp. 1167-1176, 2004.
[10] C. R. Pinega, Lalu Manshinha, “A method of time-time analysis: The TT-transform,” Digital Signal Peocessing, vol. 13, pp. 588-603, 2003.
[11] C. R. Pinnegar, “Time-frequency and time-time filtering with the S-transform and TT-Tansform,” Digital Signal Processing, vol. 15, pp. 604-620, 2005.
[12] M. Schimmel and J. Gallart, 'The inverse S-transform in filters with time-frequency localization,' IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4417-4422, Nov. 2005.
[13] Soo-ChangPei and Pai-Wei Wang, “Modified inverse S transform for filtering in time-frequency spectrum,” IEEE ICASSP-2007, Honolulu, HI, 15-20 April 2007.
[14] Carine Simon, Sergi Ventosa, Martin Schimmel, Alexander Heldring, Juan Jo Dañobeitia, Josep Gallart, and Antoni Mànuel, “The S-transform and its inverses: side effects of discretizing and filtering,” IEEE Trans. Signal Process., vol. 55, no. 10, pp. 4928–4937, Oct. 2007.
[15] R. G. Stockwell, “A basis for efficient representation of the S-transform,” Digital Signal Processing, vol. 17, 371-393, January 2007.
[16] Daniel W. Griffin and Jae S. Lim, “Signal estimation from modified Short- Time Fourier Transform,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-33, No. 2, pp. 236-243, 1984.
[17] T.A.C.M. Claasen and W.F.G Mecklenbrauker, 'The Wigner Distribution - A Tool for Time-Frequency Signal Analysis, part 2: Discrete-Time Signals,' Phillips Journal of Research, vol. 35, no.4/5, pp. 276-300, 1980.
[18] J.C. Andrieux, R. Feix, G Mourgues, P. Bertrand, B. Izrar and V.T. Nguyen, 'Optimum Smoothing of the Wigner-Ville Distribution,' IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-35, no. 6, pp. 764-769, June 1987.
[19] M. Varanini, G. De Paolis, M. Emdin, A. Macareta, S. Pola, M. Cipriana, and C. Marchesi, “A multiresolution transform for the analysis of cardiovascular time series,” IEEE Comp. Cardiology, vol. 25, pp. 137-140, 1998.
[20] Te-Won Lee, Michael S. Lewicki, Mark Girolami, and Terrence J. Sejnowski, “Blind source separation of more sources than mixtures using overcomplete representations,” IEEE Signal Processing Letters, vol. 6, No.4, April 1999.
[21] Paul D. O’Grady and Barak A. Pearlmutter, “Hard-LOST: Modified k-means for oriented lines,” Proceedings of the Irish Signals and Systems Conference, Belfast, June 30--July 2.
[22] Paul D. O’Grady and Barak A. Pearlmutter, “Soft-LOST: EM on a mixture of oriented lines, ” In Int. Conf. Independent Component Anal., pages 428–435, Granada, Spain, Sept. 2004.
[23] E. Vincent, R. Gribonval and C. Fevotte, “Performance measurement in blind audio source separation,” IEEE Transactions on Speech and Audio Processing, 14:1462-1469, July 2006.
[24] Namgook Cho, Yu Shiu and C.-C. Jay Kuo, “An Improved Technique for Blind Audio Source Separation,” IEEE Int. Conf. on Intelligent Information Hiding and Multimedia Signal Processing, Dec. 2006.
[25] A. Jourjine, S. Rickard, and O. Yilmaz, “Blind separation of disjoint orthogonal signals: Demixing N sources from 2 mixtures,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 5. Istanbul, Turkey, June 5-9, 2000, pp. 2985-2988.
[26] R. G. Stockwell, “Why use the S-Transform,” ISCAA, December 11-15, 2006, pp. 279-309.
[27] Ervin Sejdic, lgor Djurovic, and Jin Jiang, “A Window Width Optimized S-Transform,” EURASIP Jornal on Advances in Signal Processing, Volume 2008, Article ID 672941, 13 pages.
[28] G Livanos, N Ranganathan, and J Jiang, “Heart Sound Analysis Using the S Transform,” IEEE Computers in Cardiology 2000, pp. 587-590.
[29] Said Assous, Anne Humeau, Maylis Tartas, Pierre Abraham, and Jean-Pierre L’Huillier, “S-Transform Applied to Laser Doppler Flowmetry Reactive Hyperemia Signals,” IEEE Transactions on Biomedical Engineering, June 2006, pp. 1032-1037.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37690-
dc.description.abstract本篇論文由四個主要的章節組成,在第二章節中,我們將介紹時頻分析的基本概念,一些比較常見的時頻分析以及它們的特性也會逐一的討論,例如:短時間傅利葉轉換和韋格納分布等等。除此之外,他們的優缺點以及一些取捨的問題也會在此處比較。
在第三章節中,我們將討論S轉換,R. G. Stockwell et al. [6] 於1996年提出S轉換並認為此轉換是由短時間傅利葉轉換和小波轉換推導而來的,和S轉換相關的理論也會在此處做些說明,例如:TT-transform、時時濾波、時頻濾波。我們提出一個新的可變視窗,和原本S轉換不同的是此視窗可以依據訊號的性質來調整解析度,以取得更好的時頻分布圖。
在第四章節中,我們提出計算DOST的快速演算法,由於IFFT的幫忙,我們可以比原來的計算方式快上好幾倍。一個新的少量戎餘離散S轉換將會在此提出,也會和原本的S轉換以及DOST做比較。
在最後一章,我們將探討未知語音訊號分離的問題,我們針對已有的分群方法做修改,和原本方法不同之處在於在訊號分離之前我們使用了STFT時頻濾波以及不同的比重公式。和soft-LOST演算法相比較,我們的方法有更好的結果。
zh_TW
dc.description.abstractThere are four important chapters in this thesis. In chapter 2 we introduce the basic idea of time-frequency representation (TFR); some conventional TFRs, such as Short Time Fourier transform (STFT), Wigner distribution and etc., and their properties will be discussed respectively. Besides, we will also compare their major advantages, disadvantages, and some trade-off.
The S-transform, a combination of STFT and Wavelet transform, proposed by R. G. Stockwell et al. in 1996 [6], will be illustrated in chapter 3. Some related topics, TT-transform, time-time filter, and time-frequency filter, will also be mentioned. We propose a novel window to adjust the time-frequency resolution of the original S-transform in order to get a better representation of the signal and do time-frequency filtering.
We propose a fast algorithm for discrete orthonormal S-transform (DOST) in chapter 4, and due to the help of IFFT our new algorithm could run much faster than the original algorithm. A new modified discrete S-transform with less redundancies will be discussed here and compared with the original S-transform and DOST.
In the final chapter, a modified clustering method for Blind Audio Source Separation will be proposed; our major contributions are the additional STFT time-frequency filtering before the source estimation and different weighting formula. Comparing the soft-LOST with our method, our method really does a better job.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:38:51Z (GMT). No. of bitstreams: 1
ntu-97-R95942039-1.pdf: 4007598 bytes, checksum: bbea102b6fb37acfb7441095dabe210f (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
Abstract v
Chapter 1 Introduction 1
Chapter 2 Time-frequency Representations 5
2.1 Introduction 5
2.2 Conventional Fourier Transform 6
2.3 Time-frequency Representations 9
2.4 Application and Conclusion 21
Chapter 3 Novel S-transform with the Special
Varying Window 25
3.1 Introduction 25
3.2 S-transform 26
3.3 TT Transform 28
3.4 Time-frequency Filter and Time-time Filter 29
3.5 Novel S-transform with the Special Varying Window 30
3.6 Several Examples for Adjusting the Resolution 31
3.7 Filtering Out the Interference Noise Using Special Window 36
3.8 Conclusion 41
Chapter 4 Discrete S-transform 43
4.1 Introduction 43
4.2 Properties of S-transform 44
4.3 Discrete Orthonormal S-transform (DOST) 46
4.4 Fast Algorithm of the DOST 50
4.5 Discrete S-transform with Less Redundancies 54
4.6 Conclusion and Future Work 58
Chapter 5 Effective Clustering Method for Blind
Audio Separation 59
5.1 Introduction 59
5.2 Sparsity and Mixture Matrix Types 60
5.3 Soft-LOST Method 63
5.4 Clustering Method 66
5.5 Experiments and Comparisons 71
5.6 Conclusion and Future Work 76

Chapter 6 Conclusion and Future Work 78
Reference 80
dc.language.isoen
dc.title可變視窗時頻域S轉換及群聚訊號分離法zh_TW
dc.titleS-transform with the Special Varying Window and Clustering Method for Blind Audio Separationen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee丁建均(Jian-Jiun Ding),王鵬華(Peng-Hua Wang),祁忠勇(Chong-Yung Chi)
dc.subject.keyword時頻分佈,S轉換,時頻濾波,離散正規正交S轉換,未知語音訊號分離法,zh_TW
dc.subject.keywordtime-frequency representation,S-transform,time-frequency filter,discrete orthonormal S-transform,blind audio source separation,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2008-07-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
3.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved