Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37689
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏國彥
dc.contributor.authorChen-Yin Chenen
dc.contributor.author陳貞吟zh_TW
dc.date.accessioned2021-06-13T15:38:48Z-
dc.date.available2008-07-11
dc.date.copyright2008-07-11
dc.date.issued2008
dc.date.submitted2008-07-09
dc.identifier.citation呂佳蓉 (2006), 利用磁場式感應耦合電漿質譜儀精確測量碳酸鹽類之鎂鈣及鍶鈣比值, 碩士論文, 10-32 pp, 台灣大學. 莊智凱 (2008), 西赤道太平洋所羅門海ODP1115B站位上部上新統至更新統鈣質超微化石生物地層硏究, 碩士論文, 台灣大學. 陳貞吟 (2006), 以「異時發生」觀點探討浮游有孔蟲Globigerinoides fistulosus的絕滅, 學士論文, 台灣大學. Anand, P., Elderfield, H., and Conte, M. H. (2003). Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18(2). Barker, S., Greaves, M., and Elderfield, H. (2003). A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry Geophysics Geosystems, 4. Bé, A. W. H. (1980). Gametogenic Calcification in a Spinose Planktonic Foraminifer, Globigerinoides sacculifer (Brady). Marine Micropaleontology, 5(3), 283-310. Bé, A. W. H., Anderson, O. R., Faber, W. W., and Caron, D. A. (1983). Sequence of Morphological and Cytoplasmic Changes During Gametogenesis in the Planktonic Foraminifer Globigerinoides sacculifer (Brady). Micropaleontology, 29(3), 310-325. Bé, A. W. H., Caron, D. A., and Anderson, O. R. (1981). Effects of Feeding Frequency on Life Processes of the Planktonic Foraminifer Globigerinoides-Sacculifer in Laboratory Culture. Journal of the Marine Biological Association of the United Kingdom, 61(1), 257-277.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W. (1998). Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography, 13(2), 150-160.
Berger, W. H. (1969). Kummerform Foraminifera as clues to oceanic environments. Amer. Ass. Pet. Geol., Bull., 53, 706. Berger, W. H., and Piper, D. J. W. (1972). Planktonic Foraminifera - Differential Settling, Dissolution, and Redeposition. Limnology and Oceanography, 17(2), 275. Berger, W. H., Bickert, T., Schmidt, H., and Wefer, G. (1993). Quaternary Oxygen Isotope Record Of Pelagic Foraminifers:Site 806, Ontong Java Plateau: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 130. Berger, W. H., Killingley, J. S., and Vincent, E. (1978). Stable Isotopes in Deep-Sea Carbonates - Box Core Erdc-92, West Equatorial Pacific. Oceanologica Acta, 1(2), 203-216. Berggren, W. A., Kent, D. V., and Van Couvering, J. A. (1985). The Neogene, pt.2, Neogene geochronology and chronostratigraphy (Vol. Neogene geochronology and chronostratigraphy). London: Geol. Soc. London Spec. Pap.,. Bijma, J., and Hemleben, C. (1994). Population-Dynamics of the Planktic Foraminifer Globigerinoides sacculifer (Brady) from the Central Red-Sea. Deep-Sea Research Part I-Oceanographic Research Papers, 41(3), 485-510. Bijma, J., Faber, W. W., and Hemleben, C. (1990). Temperature and Salinity Limits for Growth and Survival of Some Planktonic Foraminifers in Laboratory Cultures. Journal of Foraminiferal Research, 20(2), 95-116. Bostock, H. C., Opdyke, B. N., Gagan, M. K., and Fifield, L. K. (2004). Carbon isotope evidence for changes in Antarctic Intermediate Water circulation and ocean ventilation in the southwest Pacific during the last deglaciation. Paleoceanography, 19(4).
Bouvier-Soumagnac, Y., and Duplessy, J. C. (1985). Carbon and Oxygen Isotopic
46
Composition of Planktonic-Foraminifera from Laboratory Culture, Plankton Tows and Recent Sediment - Implications for the Reconstruction of Paleoclimatic Conditions and of the Global Carbon-Cycle. Journal of Foraminiferal Research, 15(4), 302-320. Brummer, G. J. A., Hemleben, C., and Spindler, M. (1986). Planktonic Foraminiferal Ontogeny and New Perspectives for Micropalaeontology. Nature, 319(6048), 50-52. Brummer, G. J. A., Hemleben, C., and Spindler, M. (1987). Ontogeny of Extant Spinose Planktonic-Foraminifera (Globigerinidae) - a Concept Exemplified by Globigerinoides sacculifer (Brady) and G ruber (Dorbigny). Marine Micropaleontology, 12(4), 357-381. Cannariato, K. G., and Ravelo, A. C. (1997). Pliocene-Pleistocene evolution of eastern tropical Pacific surface water circulation and thermocline depth. Paleoceanography, 12(6), 805-820. Chaisson, W. P. and D' Hondt, S. L. (2000). Neogene Planktonic Foraminifer Biostratigraphy At Site 999, Western Caribbean Sea: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 165. Chaisson, W. P., and Leckie, R. M. (1993). High-Resolution Neogene Planktonic Foraminifer Biostratigraphy Of Site 806, Ontong Java Plateau (Western Equatorial Pacific): Proceedings of the Ocean Drilling Program, Scientific Results., Vol. 130 Chaisson, W. P., and Pearson, P. N. (1997). Planktonic Foraminifer Biostratigraphy At Site 925:Middle Mioceneðpleistocene: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 154.
Conkright, M. E., Locarnini, R. A., Garcia, H. E., O'Brien, T. D., Boyer, T. P., Stephens, C., et al. (2002). World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures, CD-ROM Documentation. (Publication., from National Oceanographic DataCenter: Curry, W. B., Shackleton, N. J., and Richter, C. (1995). The Oligocene Time Scale And Cyclostratigraphy On The Ceara Rise, Western Equatorialatlantic: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 154. D' Hondt, S., and Arthur, M. A. (1995). Interspecies Variation in Stable Isotopic Signals of Maastrichtian Planktonic-Foraminifera. Paleoceanography, 10(1), 123-135. de Garidel-Thoron, T., Rosenthal, Y., Beaufort, L., Bard, E., Sonzogni, C., and Mix, A. C. (2007). A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr. Paleoceanography, 22(3). Deuser, W. G. (1987). Seasonal-Variations in Isotopic Composition and Deep-Water Fluxes of the Tests of Perennially Abundant Planktonic-Foraminifera of the Sargasso Sea - Results from Sediment-Trap Collections and Their Paleoceanographic Significance. Journal of Foraminiferal Research, 17(1), 14-27. Elderfield, H., and Ganssen, G. (2000). Past temperature and delta O-18 of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature, 405(6785), 442-445. Elderfield, H., Vautravers, M., and Cooper, M. (2002). The relationship between shell size and Mg/Ca, Sr/Ca, delta O-18, and delta C-13 of species of planktonic foraminifera. Geochemistry Geophysics Geosystems, 3. Emiliani, C. (1954). Depth Habitats of Some Species of Pelagic Foraminifera as Indicated by Oxygen Isotope Ratios. American Journal of Science, 252(3), 149-158. Erez, J., and Luz, B. (1983). Experimental Paleotemperature Equation for Planktonic Foraminifera. Geochimica et Cosmochimica Acta, 47(6), 1025-1031.
Fairbanks, R. G., and Wiebe, P. H. (1980). Foraminifera and Chlorophyll Maximum -
48
Vertical-Distribution, Seasonal Succession, and Paleoceanographic Significance. Science, 209(4464), 1524-1526. Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H., and Bé, A. W. H. (1982). Vertical-Distribution and Isotopic Fractionation of Living Planktonic-Foraminifera from the Panama Basin. Nature, 298(5877), 841-844. Farmer, E. C., Kaplan, A., de Menocal, P. B., and Lynch-Stieglitz, J. (2007). Corroborating ecological depth preferences of planktonic foraminifera in the tropical Atlantic with the stable oxygen isotope ratios of core top specimens. Paleoceanography, 22(3). Field, D. B. (2004). Variability in vertical distributions of planktonic foraminifera in the California Current: Relationships to vertical ocean structure. Paleoceanography, 19(2). Fok-Pun, L., and Komar, P. D. (1983). Settling Velocities of Planktonic-Foraminifera - Density Variations and Shape Effects. Journal of Foraminiferal Research, 13(1), 60-68. Healywilliams, N., Ehrlich, R., and Williams, D. F. (1985). Morphometric and Stable Isotopic Evidence for Subpopulations of Globorotalia-Truncatulinoides. Journal of Foraminiferal Research, 15(4), 242-253. Hemleben, C., Spindler, M., and Anderson, O. R. (1989). Modern planktonic foraminifera. New York: Springer-Verlag. Hemleben, C., Spindler, M., Breitinger, I., and Ott, R. (1987). Morphological and Physiological-Responses of Globigerinoides-Sacculifer (Brady) under Varying Laboratory Conditions. Marine Micropaleontology, 12(4), 305-324.
Houston, R. M., Huber, B. T., and Spero, H. J. (1999). Size-related isotopic trends in someMaastrichtian planktic foraminifera: methodological comparisons, intraspecific variability, and evidence for photosymbiosis. Marine Micropaleontology, 36(4), 169-188. Kennett, J. P., and Srinivasan, M. S. (1983). Neogene planktonic foraminifera : a phylogenetic atlas. Stroudsburg, Pa. New York, NY: Hutchinson Ross. Kuroyanagi, A., and Kawahata, H. (2004). Vertical distribution of living planktonic foraminifera in the seas around Japan. Marine Micropaleontology, 53(1-2), 173-196.
Laube-L'Enfant, E. (1996). Global Seawater Oxygen-18 Database (Publication.: http://data.giss.nasa.gov/o18data Li, B. H., Jian, Z. M., Li, Q. Y., Tian, J., and Wang, P. X. (2005). Paleoceanography of the South China Sea since the middle Miocene: evidence from planktonic foraminifera. Marine Micropaleontology, 54(1-2), 49-62. Lin, H. L., and Hsieh, H. Y. (2007). Seasonal variations of modern planktonic foraminifera in the South China Sea. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 54(14-15), 1634-1644. Lipps, J. H. (1979). Foraminiferal ecology and paleoecology. Houston, Texas.: Society of Economic Paleontologists and. McKinney, M. L. (1986). Ecological Causation of Heterochrony - a Test and Implications for Evolutionary-Theory. Paleobiology, 12(3), 282-289. McNamara, K. J. (1986). A Guide to the Nomenclature of Heterochrony. Journal of Paleontology, 60(1), 4-13.
McNamara, K. J. (1990). Evolutionary Trends. Tucson, Arizona: The University of Arizona.
50
McNown, J. S. (1950). Effects of particle shape on settling velocity at low. Nanking: Scientific Book Company.
National Oceanic and Atmospheric Administration/Pacific Marine Environmental Laboratory. from http://www.pmel.noaa.gov/tao/elnino/nino-home.html# Nürnberg, D., Bijma, J., and Hemleben, C. (1996). Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochimica et Cosmochimica Acta, 60(5), 803-814. Olsson, R. K. (1973). What Is a Kummerform Planktonic Foraminifer. Journal of Paleontology, 47(2), 327-329. Oppo, D. W., and Fairbanks, R. G. (1989). Carbon Isotope Ccomposition of Tropical Surface Water During the Past 22,000 Years. PALEOCEANOGRAPHY, 4(4), 333-351. Parker, F. L. (1962). Planktonic foraminigeral species in Pacific sediments. Micropaleontology, 8, 219-254. Patrick, A., and Thunell, R. C. (1997). Tropical Pacific sea surface temperatures and upper water column thermal structure during the last glacial maximum. Paleoceanography, 12(5), 649-657. Ravelo, A. C., Andreasen, D. H., Lyle, M., Lyle, A. O., and Wara, M. W. (2004). Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature, 429(6989), 263-267. Rohling, E. J., Sprovieri, M., Cane, T., Casford, J. S. L., Cooke, S., Bouloubassi, I., et al. (2004). Reconstructing past planktic foraminiferal habitats using stable isotope data: a case history for Mediterranean sapropel S5. Marine Micropaleontology, 50(1-2), 89-123.
Schmidt, D. N., Renaud, S., Bollmann, J., Schiebel, R., and Thierstein, H. R. (2004). Size distribution of Holocene planktic foraminifer assemblages: biogeography, ecology and adaptation. Marine Micropaleontology, 50(3-4), 319-338. Shackleton, N. J., Berger, A., and Peltier, W. R. (1990). An Alternative Astronomical Calibration of the Lower Pleistocene Timescale Based on Odp Site 677. Transactions of the Royal Society of Edinburgh-Earth Sciences, 81, 251-261. Shipboard Scientific Party, 1998. Leg 180 summary: Actice Continental Extension in the Western Woodlark Basin, Papua new Guinea, Proceeding of the Ocean Drilling Program Initial Reports., 180: 1-77, Texas A&M University, College Station, TX77845-9547, U.S.A. Spero, H. J., and Lea, D. W. (1993). Intraspecific Stable-Isotope Variability in the Planktic Foraminifera Globigerinoides sacculifer - Results from Laboratory Experiments. Marine Micropaleontology, 22(3), 221-234. Spero, H. J., Mielke, K. M., Kalve, E. M., Lea, D. W., and Pak, D. K. (2003). Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr. Paleoceanography, 18(1). Srinivasan, M. S., and Sinha, D. K. (1998). Early Pliocene closing of the Indonesian Seaway: evidence from north-east Indian Ocean and Tropical Pacific deep sea cores. Journal of Asian Earth Sciences, 16(1), 29-44. Takahashi, K., and Be, A. W. H. (1984). Planktonic-Foraminifera - Factors Controlling Sinking Speeds. Deep-Sea Research Part I-Oceanographic Research Papers, 31(12), 1477-1500.
Thunell, R., Tappa, E., Pride, C., and Kincaid, E. (1999). Sea-surface temperature anomalies associated with the 1997-1998 El Nino recorded in the oxygen isotope
52
composition of planktonic foraminifera. Geology, 27(9), 843-846. Wara, M. W., Ravelo, A. C., and Delaney, M. L. (2005). Permanent El Nino-like conditions during the Pliocene warm period. Science, 309(5735), 758-761. Watkins, J. M., Mix, A. C., and Wilson, J. (1998). Living planktic foraminifera in the central tropical Pacific Ocean: articulating the equatorial 'cold tongue' during La Nina, 1992. Marine Micropaleontology, 33(3-4), 157-174. Wei, K. Y. (1994). Allometric Heterochrony in the Pliocene Pleistocene Planktic Foraminiferal Clade Globoconella. Paleobiology, 20(1), 66-84. Yan, X. H., Ho, C. R., Zheng, Q., and Klemas, V. (1992). Temperature and Size Variabilities of the Western Pacific Warm Pool. Science, 258(5088), 1643-1645.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37689-
dc.description.abstract中上新世時(2.9 Ma)浮游有孔蟲Globigerinoides fistulosus從Globigerinoides sacculifer分支而出,到1.7 Ma絕滅,其絕滅面被廣泛應用為上新世—更新世界線指準面。前人研究指出東西赤道太平洋表水溫差梯度在1.7 Ma左右明顯變大,在此以西太平洋暖池南緣ODP 1115B岩芯作為材料,並將G. fistulosus視為G. sacculifer的型態變種之一,與G. sacculifer的幾種型態變異(normal form、kummer form與sac-like form)合併定義為「G. sacculifer complex」,測量G. sacculifer complex、G. ruber和N. dutertrei殼體中的氧碳同位素和鎂鈣元素比,詴圖推估G. fistulosus造殼深度,重建1.71到1.77 Ma西太平洋暖池表水水體結構,進而探討西熱帶太平洋地區G. fistulosus消失與表層垂直水層結構改變的關係。 以氧碳同位素和鎂鈣元素比對殼體大小分析結果推測,G. fistulosus的生命階段與G. sacculifer一樣受共生藻影響,其特殊型態應屬於G. sacculifer complex的最終階段,且在溫度更低的水層造殼。而西熱帶太平洋地區的垂直水溫結構在1.789到1.728 Ma間有相當大的改變:從厚度較薄的混合層、深度較淺的溫躍層(1.789-1.778 Ma),演變成較厚的混合層與深度較深的溫躍層(1.755-1.728 Ma),顯示西熱帶太平洋地區水文變化不僅限於表海水溫,更包含垂直水溫結構的改變,且逐步演變為類似今日西太平洋暖池的表層水垂直結構。 最後本研究利用雷諾數(Reynolds numbers)來討論G. fistulosus的消失原因,推測在上新世—更新世交界時東西赤道太平洋表水溫差變大,西太平洋暖池區域混合層變厚,垂直水溫梯度變緩且黏滯度變小,G. sacculifer complex為了維持固定的雷諾數,個體發生階段由成態退往幼態,導致個體發生最終階段的G. fistulosus消失。此生物事件指示了西太平洋暖池發育的重要階段,並且成為熱帶海洋地層更新統底界對比的良好指標。zh_TW
dc.description.abstractAt about 1.7 Ma the west-east sea surface temperature gradient in the equatorial Pacific changed and the thermocline depth was suggested being shallow in the eastern Pacifict. Meanwhile, 1.7 Ma marks the disappearance of Globigerinoides fistulosus, a planktonic foraminifera species descended from Globigerinoides sacculifer by adding finger-like projections on the flattening final chambers in the middle Pliocene (2.9 Ma). This disappearance was apparently related to the change of west-east sea surface temperature gradient in the tropical Pacific. Relationship between the disappearance of G. fistulosus and the thermocline depth fluctuation in western Pacific is proposed here. G. fistulosus was considered to be as a member of the ―G. sacculifer complex‖, which includes 4 morphotypes, normal form, kummer form, sac-like form, and fis form, geochemical proxy records of six different size fractions, were used to investigate the ontogenic characteristics of G. sacculifer complex and how G. fistulosus disppearred at 1.7 Ma.
Paleo-sea surface temperature and surface-water hydrography from 1.789 to 1.728 Ma was reconstructed using stable isotope (δ18O, δ13C) and Mg/Ca ratios of G. sacculifer complex, G. ruber (250-355 μm, upper mixed layer dweller), and N. dutertrei (355-425 μm, upper thermocline dweller), collected from ODP Hole 1115B (ODP 180, 151°34‘E, 9°14‘S, Woodlark Rise, water depth 1149 m) at the southern periphery of western Pacific warm pool (WPWP). The δ13C values of G. sacculifer complex show an increasing trend with shell size in all the morphotypes (contributed by vital effect of symbiont). The results of δ18O value and Mg/Ca ratio of G. sacculifer complex suggest that the calcification depth of
IV
G. fistulosus might be deeper than that of all other morphotypes in the G. sacculifer complex, and the final particular chamber of G. fistulosus is the final stage of ontogenetic stage in G. sacculifer complex. A dramatic drop of Mg/Ca-derived ΔSST(G. ruber - N. dutertrei) from 1.767-1.758 Ma suggests that the difference of temperature between mixed layer and upper thermocline became smaller, and thermocline might become deeper when G. fistulosus became extinct. This finding implies that the hydrological variation of tropical western Pacific during disappearance of G. fisutlosus changed not only on sea surface temperature but also on the vertical water structure.Variation of Reynolds numbers suggests that the decrease in temperature gradient and decrease in viscosity in surface ocean during 1.7 Ma might trigger the paedomorphosis trend of G. sacculifer complex and cause the disapearance of G. fistulosus. This bio-event indicates an important step of evolution in the WPWP, and can be as a good Pliocene/Pleistocene boundary indicator in tropical marine sediments.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:38:48Z (GMT). No. of bitstreams: 1
ntu-97-R95224112-1.pdf: 3702002 bytes, checksum: 507c123f279f991fe0127f40827a3ebc (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents第一章 緒論........................................................................................................................ 1
1.1 研究動機與目的....................................................................................................... 1
1.2 研究對象—Globigerinoides fistulosus .................................................................... 2
1.2.1 G. fistulosus及G. sacculifer簡介........................................................................... 2
1.2.2 G. fistulosus的消失與型態研究 ............................................................................ 3
1.3 西太平洋暖池及其表層水體結構......................................................................... 11
第二章 實驗方法與年代模式.......................................................................................... 15
2.1 研究材料................................................................................................................. 15
2.2 年代模式................................................................................................................. 16
2.3 型態鑑定與分類..................................................................................................... 17
2.4 標本製備................................................................................................................. 18
2.5 氧碳同位素(δ18O、δ13C)分析原理及前處理 .................................................. 18
2.6 多種類浮游有孔蟲鎂鈣元素比分析(Multi-species Mg/Ca Ratio Analysis) ........ 20
2.6.1 浮游有孔蟲居棲深度與水層結構建立 ................................................................ 20
2.6.2 鎂鈣元素比分析原理與前處理 ........................................................................... 21
第三章 結果與討論.......................................................................................................... 24
3.1 G. fistulosus的生態特性 ........................................................................................ 24
3.1.1 G. sacculifer complex—形態與殼體大小的化學分析結果.................................... 24
3.1.2 G. sacculifer complex—δ18O與δ13C之間的關係 ................................................. 25
3.1.3 G. fistulosus個體發生階段模式(Ontogenetic Model)....................................... 26
3.2 西太平洋表水水文變化....................................................................................... 30
3.2.1 古海表水溫度之換算.......................................................................................... 30
3.2.2 表層水層垂直溫差的計算 .................................................................................. 31
3.2.3 表層水層垂直結構的重建 .................................................................................. 31
3.2.4 古表海水氧同位素之推估 .................................................................................. 32
3.3 由雷諾數、垂直水溫梯度變化探討G. fistulosus消失的原因 ......................... 40
第四章 結論.............................................. 43
參考文獻................................................ 44
dc.language.isozh-TW
dc.title浮游有孔蟲Globigerinoides fistulosus消失
與熱帶太平洋表水水文變化關係
zh_TW
dc.titleA study on the disappearance of Globigerinoides fistulosus and
its relationship to the hydrological change of the tropical Pacific
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈川洲,米泓生,林慧玲
dc.subject.keywordGlobigerinoides fistulosus,G. sacculifer,西太平洋暖池,氧碳同位素,鎂鈣元素比,雷諾數,更新世—上新世邊界,zh_TW
dc.subject.keywordGlobigerinoides fistulosus,G. sacculifer,Western Pacific Warm Pool,oxygen and carbon isotope,Mg/Ca ratios,Reynolds Number,Pliocene/Pleistocene boundary,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2008-07-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
3.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved