請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37658完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉(Shang-Lien Lo) | |
| dc.contributor.author | Shih-Chia Chang | en |
| dc.contributor.author | 張世佳 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:37:17Z | - |
| dc.date.available | 2008-09-09 | |
| dc.date.copyright | 2008-07-17 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-10 | |
| dc.identifier.citation | 3M Final report, perfluorooctanesulfonate, potassium salt (PFOS): A flow-through bioconcentration test with bluegill (Lepomis macrochirus). Project Number 454A-134. Studyconducted for 3M. Wildlife International Ltd., St. Paul, MN., 2002.
3M Environmental and Health Assessment of Perfluorooctane Sulfonic Acid and its Salts. Prepared by 3M Company, with J Moore (Hollyhouse Inc.), J Rodericks and D Turnbull (Environ Corp.) and W Warren-Hicks and Colleagues (The Cadmus Group, Inc.). August 2003a. Anipsitakis, G.P., Dionysiou, D.D., “Radical generation by the interaction of transition metals with common oxidants.”, Environ. Sci. Technol. 38(13): 3705-3712, 2004. Behrman, E.J., Dean, D.H., “Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (persulfate1) in polyacrylamide gel electrophoresis.”, J. Chromatogr. B. 723: 325-326, 1999. Burris, D.R., Campbell, T. J., and Manoranjan, V.S., “Sorption of Tricholroethylene and Tetracholoroethylene in a Batch Reactive Metallic Iron-Water System.”, Environ. Sci. Technol., 29, 2850-2855, 1995. Buxton. G.V., Malone, T.N.S., Samon. G.A., “Reaction of SO4-•with Fe2+ , Mn2+ and Cu2+ in aqueous solution.”, J. Chem. So., Faraday Trans. 93: 2893- 2897, 1997. Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., “Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals(OH•/O-•)in aqueous solution.”, J. Phys. Chem. Ref. Data., 1998. Buxton, G.V., Barlow, S., McGowan, S., Samon, G. A., Williams, J.E., “The reaction of the SO4-• radical with Fe(II) in acidic aqueous solution-A pulse radiolysis study.”, Phys. Chem. Chem. Phys. 1: 3111-3116, 1999. Caliebe, C., Gerwinski, W., Hühnerfuss, H., and Theobald, N., “Occurrence of Perfluorinated Organic Acids in the Water of the North Sea.”, Organohalogen compounds 66: 4074-4078, 2004. Chenju Liang, Clifford J. Bruell, Michael C. Marley, Kenneth L. Sperry, “Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion”, Chemosphere, 55, 1225-1233, 2004. Coles, R.-E., “Microwave processing and package integration.”, In AsepticProcessing and Packaging of Particulate Foods, E. M. A. Willhoft (Ed) Ch6, pp: 112-147, Blackie Academic and Professional, London, UK, 1993. De Bruyn, W.J., Shorter, J.A., Davidovits, P., Worsnop, D.R., Zahniser, M.S., Kolb, C.E., “Uptake of haloacetyl and carbonyl halides by water surfaces.”, Environ. Sci. Technol, 29, 1179-1185, 1995. Dimitrov, S., V. Kamenska, J.D. Walker, W. Windle, R. Purdy, M. Lewis and O. Mekenyan., “Predicting the biodegradation products of perfluorinated chemicals using CATABOL”, SAR and QSAR. Environ. Res.15(1): 69-82, 2004. Dogliotti, L., Hayon, E., “Flash phtolysis of persulfate Ions in aqueous solutions. Study of the sulfate and ozonide radical anions.”, J. Phy. Chem, 71: 2511-2516, 1967. Domenico, P.A., Schwartz, F.W., “Chemical Kinetics and Reaction Hydrogeology”, John Wiley & Sons, N.Y.: 824pp, 1990. Environment Canada. April 2004. Environmental Screening Assessment Report on Perfluorooctane Sulfonate, Its Salts and Its Precursors that Contain the C8F17SO2 or C8F17SO3 Moiety. Environment Agency, (2004) Environmental Risk Evaluation Report: (PFOS). D Brooke, A Footitt, T A Nwaogu. Research Contractor: Building Research Establishment Ltd. Risk and Policy Analysts Ltd Fire Fighting Foam Coalition, ”Estimated Quantities of Aqueous Film Forming Foam (AFFF) in the United States”. Prepared by Robert L. Darwin and available in the US electronic docket system, www.regulations.gov, at document number EPA-HQ-OPPT-2003-0012-0714, 2004. FMC, 2001, Persulfate Tech cal Information Fordham, J. W. L.; Williams, H. L., “The Persulfate-Iron (II) Initiator System for Free Radical Polymerizations.”, J. Am. Chem. Soc., 73, 4855, 1951. Fujii, S., C. Polprasert, et al., “New POPs in the water environment: distribution, bioassumulation and treatment of perfluorinated compounds – a review paper.”, Journal of Water Supplu Research and Technology-Aqua 56(5)”313-326, 2007. Gates-Anderson, D.D., Siegrist, R.L., Cline, S.R., “Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils.” Journal of Environ. Engineering April: 337-347, 2001. Giesy, J.P. and K. Kannan., “Perfluorochemical surfactants in the environment.”, Environ. Sci. Technol. 36: 147A-152A, 2002. Grasty, R.C., Grey, B.E., Lau, C.S., Rogers, J.M, “Prenatal Window of Susceptibility to Perfluorooctanesulfonate-Induced Neonatal Mortality in the Sprague-Dawley Rat.”, Birth Defects Research (Part B), 68, 465-471, 2003. Hayon, E., Treinin, A., Wilf,J., “Electronic Spectra, Photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. The SO2-, SO3-, SO4-, and SO5- radicals.”, Journal of the American Chemical Society., 91 (1): 47-57, 1972. Hoff, P.T, Scheirs, J., Van de Vijver, K., Van Dongen, W., Esmans, E.L, Blust, R., De Coen, W., “Biochemical Effect Evaluation of Perfluoroctane Sulfonic Acid-Contaminated Wood Mice.”, Environmental Health Perspectives, 112 (6), 681-686, 2004. Hori, H.; Hayakawa, E.; Einaga, H.; Kutsuna, S.; Koike, K.; Ibusuki, T.; Kiatagawa, H. and Arakawa, R., “Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches.”, Environ. Sci. Technol., 38(22), 6118-6124, 2004. Hori, H.; Yamamoto, A.; Hayakawa, E.; Taniyasu, S.; Yamashita, N. and Kutsuna, S., “Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant.”, Environ. Sci. Technol., 39(7), 2383-2388, 2005. Hori, H.; Nagaoka, Y.; Yamamoto, A.; Sano, T.; Yamashita, N.; Taniyasu, S. and Kutsuna, S., “Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water.”, Environ. Sci. Technol., 40(3), 1049-1054, 2006. Hori, H.; Yamamoto A.; Koike, K.; Kutsuna, S.; Osaka I. and Arakawa R., “Photochemical decomposition of environmentally persistent short-chain perfluorocarboxylic acids in water mediated by iron(II)/(III) redox reactions.” Chem. Rev., 68, 572-578, 2007. House, D.A., “Kinetics And Mechanism of Oxidations by Peroxydisulfate.”, Chem. Rev. 62: 185-203, 1962. Hrapovic, L., Sleep, B.E., Major, D. J. Hood, E.D., “Laboratory study of Treatment of trichloroethene by chemical oxidation followed by bioremediation.”, Environ. Sci. Technol. 39: 2888-2897, 2005. Huie, R.E., Clifton, C.L., “Rate constants for hydrogen abstraction reactions of the sulfate radical (SO4-•) Alkanes and ethers.”, J. Chem. Kinet.: 21-611, 1989. Huling, S.G., Pivetz, B.E., “In-Situ Chemical Oxidation.”, Engineering Issuse. U. S. EPA, pp. 5, 2006. Huyser, E. S., “Free-Radical Chain Reactions.”, Wiley-Interscience, New York, NY, 1970. Jin Q., Liang F., Zhang H. , Zhao L. and Song D., “Application of microwave techniques in analytical chemistry”, Anal. Chem., 18(7), 479-484, 1999. Kerstner-Wood, C., Coward, L. and Gorman, G., “Protein Binding of perfluorbutane sulfonate, perfluorohexanesulfonate, perfluoroooctane sulfonate and perfluorooctanoate to plasma (human, rat, monkey), and various human-derived plasma protein fractions.”, Southern Research Corporation, Study 9921.7. Unpublished report. Available on USEPA Administrative Record AR-226, 2003. Kim, Il-Kyu and Huang, Chin-Pao “Sonochemical degradation of polycyclic aromatic Sulfur hydrocarbons (pashs) in aqueous solutions Exemplified by benzothiophene.” Journal of the Chinese Institute of Engineers, Vol. 28, No. 7, pp. 1107-1118, 2005. Kingman S. W. and Rowson N. A., “Microwave treatment of minerals A review.“, Minerals Engineering, 11(11), 1081-1087, 1998. Kislenko, V.N., Berlin, A.A., Litovchenko, N.V., “Kinetics of glucose oxidation with persulfate ions, catalyzed by iron salts.” Russian Journal of general chemistry. 65, NO. 7, Part2, 1995. Kislenko, V.N., Berlin, A.A., Litovchenko, N.V., “Kinetics of oxidation glucose by persulfate ions in presence of Mn(II) ions.”, Kinetics and Catalysis. 38 (3): 391-396, 1997. Kolthoff, I. M.; Miller, I. K., “The Chemistry of Persulfate. I. The Kinetics and Mechanism of the Decomposition of the Persulfate Ion in Aqueous Medium.”, J. Am. Chem. Soc., 73, 3055, 1951. Kolthoff, I.M., Medalia, A.I., Raaen, H.P., “The reaction between Ferrous iron and Peroxides. IV. Reaction with potassium persulfate.”, J. Am. Chem. Soc.73: 1733-1739, 1951. Latimer, W.M. 1952. Oxidation Potentials, Prentice-Hall, Inc. Englewood. Cliffs, NJ. Lenka, S., Dash, S.B., “Polymerization of acrylonitrile initiated by potassium persulfate-cobalt(II) and potassium persulfate-manganese(II) redox system.”, Journal of Macromolecular Science-Chemistry A. 20 (3): 397-407, 1983. Liang, C.; Bruell, C.J.; Marley, M.C. and Sperry, K.L., “Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries.”, Soil Sediment Contam,.12 (2), 207-228, 2003. Liang, C.; Bruell, C. J.; Marley, M. C.; Sperry, K. L., “Persulfate Oxidation for In Situ Remediation of TCE. I. Activated by Ferrous Ion with and without a Persulfate-Thiosulfate Redox Couple.”, Chemosphere, 55, 1213, 2004a. Liang, C.; Bruell, C. J.; Marley, M. C.; Sperry, K. L., “Persulfate Oxidation for In Situ Remediation of TCE. II. Activated by Chelated Ferrous Ion.”, Chemosphere, 55, 1225, 2004b. Liang, C.; Wang, Z.S.; Bruell, and C.J., “Influence of pH on persulfate oxidation of TCE at ambient temperatures.”, Chemosphere, 66, 106-113, 2007. Lipctnska-Kochany, E., Sprah, G.; Harms, S., “Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the fenton reaction.”, Chemosphere. 30 (1): 9-20, 1995. Luebeker D.J., Hansen K.J, Bass N.M, Butenhoff J.L. and Secat A.M., “Interactions of fluorochemicals with rat liver fatty acid-binding protein.”, Toxicology, 15 (3), 175-85, 2002. Matheson, L.J., Tratnydk, P.G., “Reductive Dehalogenation of Chlorinated Methanes by Iron Methal.”, Environ. Sci. Technol., 28, 2045-2053, 1994. Martin, JW, Muir, DCG, Moody, CA, Ellis, DA, Kwan, WC, Solomon, KR, Mabury, SA., “Collection Of Airborne Fluorinated Organics and Analysis by Gaschromatography/Chemical Ionization Mass Spectrometry.”, Anal. Chem., 74, 584-590, 2002. Nohara, K., Toma, M., Kutsuna, S., Takeuchi, K., Ibusuki, T., “Cl atom-initiated oxidation of three homologous methyl perfluoroalkyl ethers.”, Environ. Sci. Technol. 35, 114-120, 2001. Norman, R.O.C., Storey, P.M., West, P.R., “Electron spin resonance studies. Part XXV. Reactions of sulphate radical anion with organic compounds.”, J. Chem. Soc. B: 1087-1095, 1970. Nyer, E.K., Vance, D., “Hydrogen peroxide treatment: The good, the bad, the ugly Ground Water Monit.”, Rem. Summer 19(3): 54-57, 1999. OECD Co-operation on Existing Chemicals - Hazard Assessment of Perfluorooctane Sulfonate and its Salts, Environment Directorate Joint Meeting of the Chemicals Committe and the Working Party on Chemicals, Pesticides and Biothechnology, Organisation for Economic Co-operation and Development, Paris, 21 November 2002. Pennington, D.E., Haim A., “Stoichiometry and mechanism of the chromium (II)-peroxydisulfate reaction.”, Journal of the American Chemical Society. 90 (14): 3700-3704, 1968. Peyton, G. R., “The Free-Radical Chemistry of Persulfate-Based Total Organic Carbon Analyzers.”, Mar. Chem., 41, 91, 1993. Posner, S. (IFP-research), Järnberg, U. (Institute of Applied Environmental Research). Personal communication. RIKZ (2002). Perfluoroalkylated Substances - Aquatic Environmental Assessment. RIKZ and University of Amsterdam. Report RIKZ/2002.043. Shoeib, M., T.Harner, M Ikonomou and K.Kannan, “Indoor and outdoor air concentrations and phase partitioning of perfluoroalkyl sulfonamides and polybrominated diphenyl ethers.”, 2004 Sima, J., Makanova, J., “Photochemistry of iron(III) complexes.”, Coord. Chem. Rev. 160, 161-189, 1997. So,M.K., S.Taniyasu, N.Yamashita, J.P.Giesy, J.Zheng, Z. Fang,and S.H.Im, “ Perfluorinated compounds in coastal water of Hong Kong,sorth China,and Korea.”, Environ. Sci. & Technol. 38:4056-4063, 2004. Tang, W.Z., Huang, C.P., “Effectof chlorine content of chlorinated phenols on their oxidation kinitics.”, Chemosphere. 33 (8): 1621-1635, 1996. Travina, O.A., Kozlow, Y.N., Purmal’, A.P., Rod’ko, I.Y., “Synergism of the action of the sulfite oxidation initiators, iron and peroxydisulfate ions.”, Russ. J. Phys. Chem. 73(8): 1215-1219, 1999. US-EPA (2002). Perfluorooctyl Sulfonates. Proposed Significant New Use Rule, 40 CFR Part 721, US Federal Xu, X.R., Li, H.B., Wang, W.H., Gu, J.D., “Decolorization of dyes and textile wastewater by potassium permanganate.”, Chemosphere 59: 893-898, 2005. Yamashita, N., Kurunthachalam, K., Taniyasu, S., Horii, Y., Petrick, G., and Gamo, T., “A global survey of perfluorinated acids in oceans.”, Marine Pollution Bulletin, 51 658-668, 2005. Yeh, C.K.J., Wu, H.M., Chen, T.C., “Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems.”, Journal of Hazardous Materials. 46: 67-73, 2003. Zhai, X., Hua, I., Rao, P.S.C., Lee, L.S., “Cosolvent-enhanced chemical oxidation of perchloroethylene by potassium permanganate.”, J. Contam. Hydrol.82: 61-74, 2006. Zlotozynski A., “The application of microwave radiation to analytical and environmental chemistry.”, Crit. Rev. Anal. Chem., 25(1), 43-76, 1995. 劉雅瑄,「零價鐵表面改質對水中硝酸鹽還原脫硝反應之影響」,博士論文,國立台灣大學環境工程研究所,2006 謝慶弘,「以微波輔助重金屬污泥回收再利用之研究」,博士論文,國立台灣大學環境工程研究所,2008 翁士奇,「奈米級零價鐵及銅鐵雙金屬還原水中硝酸鹽之研究」,碩士論文,國立台灣大學環境工程研究所,2005 章日行、程淑芬、林佩君、鍾秉倫,「整合零價鐵與電動力法復育四氯乙烯污染土壤」,中華民國環境工程學會第十五屆年會及第一屆土壤及地下水處理技術研討會,2003 李維豐、黃宛淇、廖述良,「我國全氟辛烷磺酸鹽管理制度與策略之探討」中華民國環境工程學會、環境規劃與管理研討會2006 台灣環境管理協會,「毒性化學物質公告列管目的用途檢討與因應歐盟管制計畫期末報告」,2005 行政院環境保護署,「毒性化學物質管理法」,2002 林財富,「土壤及地下水污染物化整治技術介紹」,預防與整治之法令及技術宣導講習會,2005 梁振儒,「淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法」,台灣土壤及地下水環境保護協會簡訊,第23期,第13-20頁,2007。 孫任賢,「微波誘導奈米零價鐵降解四氯乙烯及五氯酚之研究」,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,2006 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37658 | - |
| dc.description.abstract | 全氟化合物因具有環境持久性、生物累積性及對人體有潛在的毒性,且其碳-氟鍵結(C-F)具高穩定性,無法藉由自然程序破壞,必須研發出有效的方法,使其降解為二氧化碳(CO2)及氟離子(F-)。本研究以全氟辛酸(perfluorooctanoic acid, PFOA)做為主要污染物,以微波水熱法加速過硫酸鹽氧化PFOA,另選擇零價鐵作為過硫酸鹽的活化劑,藉由零價鐵解離出亞鐵離子活化過硫酸鹽,同樣在微波場下反應,加速PFOA降解成最終產物。實驗在不同溫度、pH值、過硫酸鹽加藥量及零價鐵加藥量下之PFOA及全氟辛烷磺酸(perfluorooctane sulphonate, PFOS) 去除效率。實驗結果顯示,藉由微波加熱的協助可加快過硫酸鹽去除PFOA的速率,在PS/MW系統130℃下,當pH值從11降到2,PFOA去除率從0%增加到84.3%;過硫酸鹽濃度對PFOA去除的影響,以PFOA的假一階反應常數(kobs)做比較,過硫酸鹽5 mM及10 mM的kobs值分別是1mM的1.29倍及4.31倍;溫度的影響在過硫酸鹽5 mM、pH3、140℃的條件下反應1小時後,PFOA去除率超過98%;而過硫酸鹽結合零價鐵粉系統下(PS /ZVI/MW)更能提升PFOA的去除效率,比較MW、PS/MW及PS/MW/ZVI系統的反應動力常數分別為 4.0×10-3 h-1,9.7 ×10-2 h-1及2.3×102 M-1h-1(二階反應動力)。最佳條件應用於PFOS上結果顯示,於PS/ZVI/MW其在反應時間30分鐘內PFOS去除率可達75.0%,具有實際的應用性。 | zh_TW |
| dc.description.abstract | The perfluorinated compounds (PFCs) have the environmental persistence, bioaccumulation, and potential toxicity to humans. The PFCs has high stability that ascribed to their C-F bonds, have no known natural decomposition processes. Therefore, developing effective methods to degrade PFCs becomes F- and CO2 is important. Perfluorooctanoic acid (PFOA) is the main study pollutants of this research. With the methods of oxidizing PFCAs by using persulfate under microwave field, which increasing PFOA and perfluorooctane sulphonate (PFOS) decomposition rate. And we choose the activator as the persulfate of zero valent iron utilize it from ferrous ion, which could activate persulfate to from sulfate radicals. This study discusse the PFOA decomposition at different concentration of PS and dosage of ZVI under different temperature and pH. According to the experimental results, the PS/MW processes of degradation efficiency of the PFOA at 130℃. PFOA decomposition increased from 0% to 84.3% while pH value decreased from 11 to 2 for a half hour. The influence of persulfate concentration, the pseudo first-order rate constants (k) is 1.29 times higher at 5 mM and 4.31 times higher at 10 mM than at 1 mM. Within 1 hours, more than 98% of PFOA was decomposed at 140℃ with 5 mM persulfate. And the PS/ZVI/MW processes more effective degraded PFOA. The k value of MW, PS/MW, PS/ZVI/MW processes were 4.0×10-3 h-1, 9.7×10-2 h-1 and 2.3×102 M-1h-1(second order), respectively. The best optimum condition applies on PFOS. The result demonstrated that, more than 75.0% of PFOS was decomposed within 30 minute at PS/ZVI/MW processes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:37:17Z (GMT). No. of bitstreams: 1 ntu-97-R95541106-1.pdf: 1270818 bytes, checksum: 7d1a2faab7018c7f7dc710db17554597 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II 目 錄 III 圖 目 錄 VI 表 目 錄 VIII 第一章 緒 論 1 1.1 研究緣起 1 1.2 研究目的 2 1.3 研究內容 3 第二章 文獻回顧 4 2.1 PFCS之污染及危害 4 2.1.1 物理特性 4 2.1.2 用途及數量 5 2.1.3 如何進入環境 9 2.1.4 環境移轉性 10 2.1.5 分布於城市濃度 11 2.1.6 全氟化合物之危害性 12 2.1.6.1 持久性 12 2.1.6.2 生物蓄積性 12 2.2我國全氟化合物的現況 13 2.3 全氟化合物處理技術之比較 14 2.3.1 光化學氧化法 14 2.3.2 超音波氧化法 14 2.3.3 活性碳吸附法 15 2.4 化學氧化法反應 16 2.4.1 氧化劑 16 2.4.2 過錳酸鹽 16 2.4.3 Fenton試劑 17 2.4.4 過硫酸鹽 18 2.4.5 硫酸根自由基之化學特性 20 2.5 零價鐵反應理論 23 2.5.1 零價鐵還原脫氯之基本原理 23 2.5.2零價鐵影響因子之探討 24 2.5.2.1 鐵粉表面積 24 2.5.2.2 pH值 25 2.6 微波理論 25 2.6.1 微波原理 25 2.6.2溶液於微波場之反應 26 2.6.3 固相樣品於微波場之反應 28 2.6.4 影響微波加熱的因子 28 2.6.5 微波加熱的特性 30 第三章 研究方法 31 3.1 研究架構 31 3.2 實驗分析方法 32 3.3 PFCAS降解實驗 38 3.3.1 實驗裝置及操控流程 38 3.3.2 背景實驗 39 3.3.2.1 直接微波加熱試驗 39 3.3.2.2 零價鐵吸附動力試驗 39 3.3.3 實驗操作參數 39 3.3.3.1 pH試驗 39 3.3.3.2 溫度試驗 40 3.3.3.3 過硫酸鹽劑量試驗 40 3.3.3.4 催化劑最佳添加量試驗 40 第四章 結果與討論 41 4.1過硫酸鹽氧化PFOA反應之操作條件探求 41 4.1.1 pH值影響 41 4.1.2 不同過硫酸鹽濃度之反應動力 45 4.1.3 溫度影響之反應動力 48 4.2 添加零價鐵之過硫酸鹽氧化PFOA反應 52 4.2.1零價鐵粉之吸附動力 52 4.2.2 零價鐵粉添加量 53 4.2.3 過硫酸鹽與零價鐵粉添加比例 53 4.2.4 鐵離子對PFOA氧化之影響 59 4.3 過硫酸鹽氧化PFOA之反應機制 63 4.3.1中間產物 65 4.3.2質量平衡 67 4.4 過硫酸鹽氧化PFOS之衍生試驗 68 4.4.1零價鐵粉之吸附動力 68 4.4.2 PS/ZVI系統下PFOS之動力實驗 68 第五章 結論與建議 70 5.1 結論 70 5.2 建議 72 第六章 參考文獻 73 附 錄 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 零價鐵 | zh_TW |
| dc.subject | 微波 | zh_TW |
| dc.subject | 全氟辛酸 | zh_TW |
| dc.subject | 過硫酸鹽 | zh_TW |
| dc.subject | 酸根自由基 | zh_TW |
| dc.subject | zero valent iron | en |
| dc.subject | perfluorooctanoic acid | en |
| dc.subject | persulfate | en |
| dc.subject | microwave | en |
| dc.subject | sulfate radical | en |
| dc.title | 以微波水熱法輔助過硫酸鹽降解水中全氟辛酸 | zh_TW |
| dc.title | Decomposition of Perfluorooctanoic Acid (PFOA) in Water by Persulfate-induced via Microwave Irradiation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林郁真,劉雅瑄 | |
| dc.subject.keyword | 微波,全氟辛酸,過硫酸鹽,硫,酸根自由基,零價鐵, | zh_TW |
| dc.subject.keyword | microwave,perfluorooctanoic acid,persulfate,sulfate radical,zero valent iron, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
