請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37629完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡忠怡(Chung-Yi Hu) | |
| dc.contributor.author | Yi-Wen Kao | en |
| dc.contributor.author | 高意雯 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:35:40Z | - |
| dc.date.available | 2013-10-07 | |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-10 | |
| dc.identifier.citation | 1. Pui C-H, Relling MV, Downing JR: Acute Lymphoblastic Leukemia, N Engl J Med 2004, 350:1535-1548
2. Pui C-H, Evans WE: Treatment of Acute Lymphoblastic Leukemia, N Engl J Med 2006, 354:166-178 3. Pui C-H, Robison LL, Look AT: Acute lymphoblastic leukaemia, The Lancet 2008, 371:1030-1043 4. Pui C-H, Carroll WL, Meshinchi S, Arceci RJ: Biology, Risk Stratification, and Therapy of Pediatric Acute Leukemias: An Update, J Clin Oncol 2011, 29:551-565 5. Tigay JH: A comparison of acute lymphoblastic leukemia in Down syndrome and non-Down syndrome children: the role of trisomy 21, J Pediatr Oncol Nurs 2009, 26:362-368 6. Bassan R, Hoelzer D: Modern Therapy of Acute Lymphoblastic Leukemia, J Clin Oncol 2011, 7. Mitterbauer-Hohendanner G, Mannhalter C: The biological and clinical significance of MLL abnormalities in haematological malignancies, Eur J Clin Invest 2004, 34:12-24 8. Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, Ben Abdelali R, Macintyre E, De Braekeleer E, De Braekeleer M, Delabesse E, de Oliveira MP, Cave H, Clappier E, van Dongen JJM, Balgobind BV, van den Heuvel-Eibrink MM, Beverloo HB, Panzer-Grumayer R, Teigler-Schlegel A, Harbott J, Kjeldsen E, Schnittger S, Koehl U, Gruhn B, Heidenreich O, Chan LC, Yip SF, Krzywinski M, Eckert C, Moricke A, Schrappe M, Alonso CN, Schafer BW, Krauter J, Lee DA, zur Stadt U, Te Kronnie G, Sutton R, Izraeli S, Trakhtenbrot L, Lo Nigro L, Tsaur G, Fechina L, Szczepanski T, Strehl S, Ilencikova D, Molkentin M, Burmeister T, Dingermann T, Klingebiel T, Marschalek R: New insights to the MLL recombinome of acute leukemias, Leukemia 2009, 23:1490-1499 9. Pui C-H, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W, Silverman LB, Biondi A, Harms DO, Vilmer E, Schrappe M, Camitta B: Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region, The Lancet 2002, 359:1909-1915 10. Liang D-C, Yang C-P, Lin D-T, Hung I-J, Lin K-H, Chen J-S, Hsiao C-C, Chang T-T, Peng C-T, Lin M-T, Chang T-K, Jaing T-H, Liu H-C, Wang L-Y, Yeh T-C, Jou S-T, Lu M-Y, Cheng C-N, Sheen J-M, Chiou S-S, Wu K-H, Hung G-Y, Chen R-L, Chen S-H, Cheng S-N, Chang Y-H, Chen B-W, Ho W-L, Wang J-L, Lin S-T, Hsieh Y-L, Wang S-C, Chang H-H, Yang Y-L, Huang F-L, Chang C-Y, Chang W-H, Lin K-S: Long-term results of Taiwan Pediatric Oncology Group studies 1997 and 2002 for childhood acute lymphoblastic leukemia, Leukemia 2009, 24:397-405 11. Piccaluga PP, Paolini S, Martinelli G: Tyrosine kinase inhibitors for the treatment of Philadelphia chromosome-positive adult acute lymphoblastic leukemia, Cancer 2007, 110:1178-1186 12. Carpiuc KT, Stephens JM, Botteman MF, Feng W, Hay JW: A review of the clinical and economic outcomes of imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia, Expert Opin Pharmacother 2007, 8:2775-2787 13. Lindsey RH, Bromberg KD, Felix CA, Osheroff N: 1,4-Benzoquinone Is a Topoisomerase II Poison†, Biochemistry (Mosc) 2004, 43:7563-7574 14. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ: Role of Quinones in Toxicology†, Chem Res Toxicol 2000, 13:135-160 15. Hiraku Y, Kawanishi S: Oxidative DNA Damage and Apoptosis Induced by Benzene Metabolites, Cancer Res 1996, 56:5172-5178 16. Kolachana P, Subrahmanyam VV, Meyer KB, Zhang L, Smith MT: Benzene and Its Phenolic Metabolites Produce Oxidative DNA Damage in HL60 Cells in Vitro and in the Bone Marrow in Vivo, Cancer Res 1993, 53:1023-1026 17. Inayat-Hussain SH, Winski SL, Ross D: Differential Involvement of Caspases in Hydroquinone-Induced Apoptosis in Human Leukemic HL-60 and Jurkat Cells, Toxicol Appl Pharmacol 2001, 175:95-103 18. Inayat-Hussain SH, Ross D: Intrinsic Pathway of Hydroquinone Induced Apoptosis Occurs via Both Caspase-Dependent and Caspase-Independent Mechanisms, Chem Res Toxicol 2005, 18:420-427 19. Terasaka H, Morshed SRMD, Hashimoto K, Sakagami H, Fujisawa S: Hydroquinone-induced Apoptosis in HL-60 Cells, Anticancer Res 2005, 25:161-170 20. Shen D-X, Shi X, Fu J-L, Zhang Y-M, Zhou Z-C: The role of thiol reduction in hydroquinone-induced apoptosis in HEK293 cells, Chemico-Biological Interactions 2003, 145:225-233 21. Lindsey RH, Bender RP, Osheroff N: Effects of Benzene Metabolites on DNA Cleavage Mediated by Human Topoisomerase IIα: 1,4-Hydroquinone Is a Topoisomerase II Poison, Chem Res Toxicol 2005, 18:761-770 22. Champoux JJ: DNA topoisomerases: Structure, Function, and Mechanism, Annu Rev Biochem 2001, 70:369-413 23. Pommier Y, Leo E, Zhang H, Marchand C: DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs, Chem Biol 2010, 17:421-433 24. Nitiss JL: Targeting DNA topoisomerase II in cancer chemotherapy, Nat Rev Cancer 2009, 9:338-350 25. Cortes F, Pastor N, Mateos S, Dominguez I: Roles of DNA topoisomerases in chromosome segregation and mitosis, Mutation Research/Reviews in Mutation Research 2003, 543:59-66 26. Guerin E, Entz-Werle N, Eyer D, Pencreac'h E, Schneider A, Falkenrodt A, Uettwiller F, Babin A, Voegeli AC, Lessard M, Gaub MP, Lutz P, Oudet P: Modification of topoisomerase genes copy number in newly diagnosed childhood acute lymphoblastic leukemia, Leukemia 2003, 17:532-540 27. Cattan AR, Levett D, Douglas EA, Middleton PG, Taylor PR: Method for quantifying expression of functionally active topoisomerase II in patients with leukaemia, J Clin Pathol 1996, 49:848-852 28. Stammler G, Sauerbrey A, Volm M: Determination of DNA topoisomerase II in newly diagnosed childhood acute lymphoblastic leukemia by immunocytochemistry and RT-PCR, Cancer Lett 1994, 84:141-147 29. Bender RP, Ham A-JL, Osheroff N: Quinone-Induced Enhancement of DNA Cleavage by Human Topoisomerase IIα: Adduction of Cysteine Residues 392 and 405†, Biochemistry (Mosc) 2007, 46:2856-2864 30. Fung J, Hoffmann MJ, Kim DD, Snyder R: Inhibition of topoisomerase II in 32D.3(G) cells by hydroquinone is associated with cell death, J Appl Toxicol 2004, 24:183-188 31. Wu P-L, Lin S-B, Huang C-P, Chiou RYY: Antioxidative and Cytotoxic Compounds Extracted from the Sap of Rhus succedanea, J Nat Prod 2002, 65:1719-1721 32. Huang C-P, Fang W-H, Lin L-I, Chiou RY, Kan L-S, Chi N-H, Chen Y-R, Lin T-Y, Lin S-B: Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning, Toxicol Appl Pharmacol 2008, 227:331-338 33. Lockshin RA, Williams CM: Programmed cell death--II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths, J Insect Physiol 1964, 10:643-649 34. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G: Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009, Cell Death Differ 2009, 16:3-11 35. Degterev A, Yuan J: Expansion and evolution of cell death programmes, Nat Rev Mol Cell Biol 2008, 9:378-390 36. Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br J Cancer 1972, 26:239-257 37. Samali A, Zhivotovsky B, Jones D, Nagata S, Orrenius S: Apoptosis: cell death defined by caspase activation, Cell Death Differ 1999, 6:495-496 38. Pop C, Salvesen GS: Human Caspases: Activation, Specificity, and Regulation, J Biol Chem 2009, 284:21777-21781 39. Orrenius S, Gogvadze V, Zhivotovsky B: Mitochondrial Oxidative Stress: Implications for Cell Death, Annu Rev Pharmacol Toxicol 2007, 47:143-183 40. Nguewa PA, Fuertes MA, Alonso C, Perez JM: Pharmacological Modulation of Poly(ADP-ribose) Polymerase-Mediated Cell Death: Exploitation in Cancer Chemotherapy, Mol Pharmacol 2003, 64:1007-1014 41. Soldani C, Scovassi AI: Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: An update, Apoptosis 2002, 7:321-328 42. Gobeil S, Boucher CC, Nadeau D, Poirier GG: Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases, Cell Death Differ 2001, 8:588-594 43. Herceg Z, Wang Z-Q: Failure of Poly(ADP-Ribose) Polymerase Cleavage by Caspases Leads to Induction of Necrosis and Enhanced Apoptosis, Mol Cell Biol 1999, 19:5124-5133 44. Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M: Role of Poly(ADP-ribose) Polymerase (PARP) Cleavage in Apoptosis, J Biol Chem 1999, 274:22932-22940 45. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng T-I, Jones DP, Wang X: Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked, Science 1997, 275:1129-1132 46. Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, Costantini P, Ferri KF, Irinopoulou T, Prevost M-C, Brothers G, Mak TW, Penninger J, Earnshaw WC, Kroemer G: Two Distinct Pathways Leading to Nuclear Apoptosis, The Journal of Experimental Medicine 2000, 192:571-580 47. Broker LE, Kruyt FAE, Giaccone G: Cell Death Independent of Caspases: A Review, Clin Cancer Res 2005, 11:3155-3162 48. Yu S-W, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL: Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death, Proceedings of the National Academy of Sciences 2006, 103:18314-18319 49. Andrabi SA, Kim NS, Yu S-W, Wang H, Koh DW, Sasaki M, Klaus JA, Otsuka T, Zhang Z, Koehler RC, Hurn PD, Poirier GG, Dawson VL, Dawson TM: Poly(ADP-ribose) (PAR) polymer is a death signal, Proceedings of the National Academy of Sciences 2006, 103:18308-18313 50. Kroemer G, Martin SJ: Caspase-independent cell death, Nat Med 2005, 11:725-730 51. Halliwell B: Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?, The Lancet 1994, 344:721-724 52. Fleury C, Mignotte B, Vayssiere J-L: Mitochondrial reactive oxygen species in cell death signaling, Biochimie 2002, 84:131-141 53. Hampton MB, Kettle AJ, Winterbourn CC: Inside the Neutrophil Phagosome: Oxidants, Myeloperoxidase, and Bacterial Killing, Blood 1998, 92:3007-3017 54. Wojtaszek P: Oxidative burst: an early plant response to pathogen infection, Biochem J 1997, 322 ( Pt 3):681-692 55. Lancaster jr JR, Laster SM, Gooding LR: Inhibition of target cell mitochondrial electron transfer by tumor necrosis factor, FEBS Lett 1989, 248:169-174 56. Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W: Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation, J Biol Chem 1992, 267:5317-5323 57. Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W: Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF, EMBO J 1993, 12:3095-3104 58. Goossens V, Grooten J, De Vos K, Fiers W: Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity, Proceedings of the National Academy of Sciences 1995, 92:8115-8119 59. Talley A, Dewhurst S, Perry S, Dollard S, Gummuluru S, Fine S, New D, Epstein L, Gendelman H, Gelbard H: Tumor necrosis factor alpha-induced apoptosis in human neuronal cells: protection by the antioxidant N-acetylcysteine and the genes bcl-2 and crmA, Mol Cell Biol 1995, 15:2359-2366 60. Sidoti-de Fraisse C, Rincheval V, Risler Y, Mignotte B, Vayssiere JL: TNF-alpha activates at least two apoptotic signaling cascades, Oncogene 1998, 17:1639-1651 61. Kong Q, Lillehei KO: Antioxidant inhibitors for cancer therapy, Med Hypotheses 1998, 51:405-409 62. Hanahan D, Weinberg RA: The Hallmarks of Cancer, Cell 2000, 100:57-70 63. Roger John Benjamin King MWR: Cancer biology. Edited by Pearson/Prentice Hall, 2006, 64. 陳若白、黃敬倫、鄭安理: 特定標的之新藥開發 (Target-based Drug Discovery):癌症的分子標靶治療. Edited by 教育部顧問室醫藥基因生物技術教學資源中心, 2005, 65. Simunek T, Sterba M, Popelova O, Adamcova M, Hrdina R, Gersl V: Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron, Pharmacol Rep 2009, 61:154-171 66. Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP: Late Cardiac Effects of Doxorubicin Therapy for Acute Lymphoblastic Leukemia in Childhood, N Engl J Med 1991, 324:808-815 67. Han Z, Hendrickson EA, Bremner TA, Wyche JH: A Sequential Two-Step Mechanism for the Production of the Mature p17:p12 Form of Caspase-3 in Vitro, J Biol Chem 1997, 272:13432-13436 68. de Bruin EC, Meersma D, de Wilde J, den Otter I, Schipper EM, Medema JP, Peltenburg LTC: A serine protease is involved in the initiation of DNA damage-induced apoptosis, Cell Death Differ 2003, 10:1204-1212 69. Yang Y, Zhao S, Song J: Caspase-dependent apoptosis and -independent poly(ADP-ribose) polymerase cleavage induced by transforming growth factor [beta]1, The International Journal of Biochemistry & Cell Biology 2004, 36:223-234 70. Hawtin RE, Stockett DE, Byl JAW, McDowell RS, Tan N, Arkin MR, Conroy A, Yang W, Osheroff N, Fox JA: Voreloxin Is an Anticancer Quinolone Derivative that Intercalates DNA and Poisons Topoisomerase II, PLoS ONE 2010, 5:e10186 71. Yu J, Zhang L: The transcriptional targets of p53 in apoptosis control, Biochem Biophys Res Commun 2005, 331:851-858 72. Zhivotovsky B, Orrenius S: Caspase-2 function in response to DNA damage, Biochem Biophys Res Commun 2005, 331:859-867 73. Chauvier D, Ankri S, Charriaut-Marlangue C, Casimir R, Jacotot E: Broad-spectrum caspase inhibitors: from myth to reality?, Cell Death Differ 2006, 14:387-391 74. Franke JC, Plotz M, Prokop A, Geilen CC, Schmalz H-G, Eberle J: New caspase-independent but ROS-dependent apoptosis pathways are targeted in melanoma cells by an iron-containing cytosine analogue, Biochem Pharmacol 2010, 79:575-586 75. Shih C-M, Ko W-C, Wu J-S, Wei Y-H, Wang L-F, Chang EE, Lo T-Y, Cheng H-H, Chen C-T: Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts, J Cell Biochem 2004, 91:384-397 76. Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S: Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and -independent apoptosis in L929 cells, Free Radic Biol Med 2008, 45:1403-1412 77. Kang Y-H, Yi M-J, Kim M-J, Park M-T, Bae S, Kang C-M, Cho C-K, Park I-C, Park M-J, Rhee CH, Hong S-I, Chung HY, Lee Y-S, Lee S-J: Caspase-Independent Cell Death by Arsenic Trioxide in Human Cervical Cancer Cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria, Cancer Res 2004, 64:8960-8967 78. Kong Q, Beel JA, Lillehei KO: A threshold concept for cancer therapy, Med Hypotheses 2000, 55:29-35 79. Ladas EJ, Jacobson JS, Kennedy DD, Teel K, Fleischauer A, Kelly KM: Antioxidants and Cancer Therapy: A Systematic Review, J Clin Oncol 2004, 22:517-528 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37629 | - |
| dc.description.abstract | 急性淋巴性白血病(Acute lymphoblastic leukemia, ALL)為造血系統不正常病變導致不成熟淋巴球異常增生的疾病;佔兒童癌症發生的第一位。目前兒童ALL的藥物治療成效良好,五年無事件存活率約達76~86%,不過帶有t(9;22)或MLL基因轉位的極高危險群(Very high risk, VHR)病人經密集高劑量化學治療後尚無法達到長時間的緩解。因此,發展對VHR-ALL病患更有效的治療療程或者新藥是ALL的重要研究課題。漆樹萃取物對苯二酚衍生物 HQ17(3)於先前曾經被研究發現有抗癌能力,且低濃度即對惡性骨髓性血癌細胞株HL-60有毒殺效果。
本研究於先驅測試中確定低濃度HQ17(3)對四株ALL細胞株即具有細胞毒性,乃選定帶有MLL-AF4基因轉位的RS4;11細胞株為標的,研究HQ17(3)造成VHR ALL細胞毒性之機轉。結果顯示HQ17(3)會誘導RS4;11細胞株中活性氧(ROS)的產生,破壞粒線體膜電位,硫胱胺酸蛋白酶(Caspase)活化,多二磷酸腺苷核糖聚合酶(PARP)被切割,細胞發生凋亡(Apoptosis)。加入泛硫胱胺酸蛋白酶抑制劑(Pan-caspase inhibnitor)雖然可以抑制HQ17(3)所誘發的caspase活性,但是卻無法抑制PARP切割與細胞死亡。抗氧化劑(Antioxidants, ROS scavengers)榖胱苷肽(GSH)和維生素C可以減緩HQ17(3)所誘導的ROS產生,減少細胞粒線體膜電位的變化,挽救細胞死亡。綜合本研究的實驗結果顯示ROS是HQ17(3)誘導RS4;11細胞死亡的主要原因之一;HQ17(3)雖亦造成caspase活化,但非HQ17(3)誘導RS4;11細胞死亡的原因。此外,本研究結果指出若可選擇性誘導細胞中ROS產生,可能有潛力發展輔助治療如MLL-AF4基因轉位的VHR ALL的策略。 | zh_TW |
| dc.description.abstract | Acute lymphoblastic leukemia (ALL), a haematopoietic malignant disorder of lymphoid cells, is the most prevalent childhood cancer. Although the rate of success in the treatment of childhood ALL has been improved with a 5-year event-free survival of 76-88%, patients succumbing very-high- risk (VHR) ALLs (those harboring t(9;22) or MLL rearrangements chromosomal abnormalities) display poor clinical outcomes even with intensive chemotherapies. Thus, more effective treatment protocols or new drugs are beneficial for these patients. HQ17(3)(10’(Z),13’(E),15’(E)-heptadecatrienyl-
hydroquinone), isolated from the sap of Rhus succedanea, had been reported to have anti-cancer activity, and low concentration of HQ17(3) showed cytotoxicity to the HL-60 myeloid leukemia cells. Our pilot screening confirmed HQ17(3) exhibited effective cytotoxic effect on four tested ALL cell lines. Thus, the RS4;11 cell line harboring MLL-AF4 gene translocation was chosen for the detailed investigation of the effects of HQ17(3) on VHR ALL cells. HQ17(3) induced reactive oxygen species (ROS) production in RS4;11 cells, and disrupted the mitochondrial membrane potential, activated caspase-3, and cleaved poly (ADP-ribose) polymerase (PARP). RS4;11 cells treated with HQ17(3) showed features of apoptotic cell death. Pan-caspase inhibitor could effectively inhibit HQ17(3)-induced caspase-3 activation, but could neither reduce HQ17(3)-induced PARP cleavage nor rescue cells from death. Antioxidants or ROS scavengers (GSH, vitamin C) attenuated HQ17(3)-induced ROS production, mitochondrial membrane potential lost, and cell death. These results indicated that oxidative stress associated with ROS production is one of the major mechanisms to cause HQ17(3)-induced RS4;11 cell death. In conclusion, HQ17(3) displayed significant anti-leukemic activity by inducing ROS and cell apoptotic death. These results further indicated that ROS-inducing agents might potentially augment the treatment for VHR ALL with t(4;11) translocation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:35:40Z (GMT). No. of bitstreams: 1 ntu-100-R98424029-1.pdf: 2872742 bytes, checksum: 240b8a65082596aa8922211b546b80bb (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II 目錄 IV 圖目錄 VIII 附錄目錄 IX 第一章 緒論 1 第一節 急性淋巴性白血病 1 1.1 急性淋巴性白血病簡介 1 1.2 急性淋巴性白血病的症狀與診斷 2 1.3 急性淋巴性白血病的致病機轉與預後指標 3 1.4 急性淋巴性白血病的治療現況與成效 4 第二節 對苯二酚及其衍生物 6 2.1 對苯二酚相關文獻探討 6 2.2 對苯二酚衍生物─HQ17(3)相關文獻探討 9 第三節 細胞死亡 10 3.1 細胞死亡 10 3.2 細胞凋亡與硫胱胺酸蛋白酶依賴性細胞死亡(Apoptosis and caspase-dependent cell death) 11 3.3 非硫胱胺酸依賴性細胞死亡(Caspase-independent cell death) 14 第四節 活性氧族群 (Reactive oxygen species, ROS) 15 4.1 活性氧族群 15 4.2 活性氧族群(ROS)對細胞的傷害 16 4.3 細胞中的抗氧化系統 17 4.4 活性氧族群與細胞死亡 18 第五節 癌症的治療 19 5.1 癌症的發生與治療概況 19 5.2 急性淋巴性白血病的治療 21 第二章 研究目的與實驗設計 23 第一節 研究目的 23 1.1 研究目的 23 1.2 相關文獻回顧 23 第二節 實驗設計 24 第三章 材料與方法 25 第一節 實驗材料 25 1.1 細胞株 25 1.2 試藥/劑、抗體、儀器、耗材清單 25 1.3 各式溶液及其配方 28 1.3.1 細胞培養、繼代 28 1.3.2 流氏細胞儀相關實驗 29 1.3.3 萃取細胞蛋白質 29 1.3.4 鈉十二烷基硫酸鹽聚丙烯胺凝膠電泳與膠體轉漬 30 1.3.5 西方點墨法 32 第二節 實驗方法 33 2.1 解凍細胞、細胞培養及細胞計數 33 2.2 細胞活性測試及藥物IC50決定 33 2.3 細胞凋亡特徵與細胞膜完整性分析 34 2.4 細胞粒線體膜電位的測定 35 2.5 細胞內DNA含量分析(sub-G1) 35 2.6 細胞內caspase活性分析(西方點墨法) 36 2.6.1 蛋白質萃取 36 2.6.2 蛋白質定量、稀釋與電泳樣品準備 36 2.6.3 鈉十二烷基硫酸鹽聚丙烯胺凝膠電泳與膠體轉漬 37 2.6.4 阻斷非特異性結合與免疫染色 37 2.6.5 脫除反應與α-tubulin(internal control)免疫染色 38 2.6.6 定量分析計算方式 38 2.7 細胞內活性氧自由基的分析 38 2.8 統計分析 39 第四章 結果 40 第一節 HQ17(3)對急性淋巴性白血病細胞有細胞毒性 40 1.1 HQ17(3)能夠抑制急性淋巴性白血病細胞的生長及誘導死亡 40 1.2 HQ17(3)能夠抑制RS4;11細胞的生長及誘導死亡 40 第二節 HQ17(3)處理RS4;11細胞出現細胞凋亡特徵 41 2.1 HQ17(3)促使RS4;11細胞膜脂質外翻、細胞膜受損 41 2.3 HQ17(3)處理RS4;11細胞使DNA斷裂(sub-G1) 42 2.2 HQ17(3)處理RS4;11細胞使細胞粒線體膜電位發生改變 42 第三節 HQ17(3)促使RS4;11細胞死亡與caspase活化 43 3.1 HQ17(3)活化RS4;11細胞中的caspase 43 3.2 Pan-caspase inhibitor無法減少HQ17(3)所引起的細胞死亡 44 3.3 Pan-caspase inhibitor無法減緩PARP降解 45 第四節 HQ17(3)主要透過誘發ROS產生引起RS4;11細胞死亡 45 4.1 HQ17(3)會誘導RS4;11細胞中ROS產生 45 4.2 抗氧化劑可以減少HQ17(3)所引起的細胞死亡 46 4.3 抗氧化劑可以減緩HQ17(3)所誘導的ROS增加 46 4.4 抗氧化劑可以減緩HQ17(3)所造成的粒線體膜電位改變 47 第五章 討論 48 第六章 參考文獻 54 圖與表 64 附錄 82 | |
| dc.language.iso | zh-TW | |
| dc.subject | 急性淋巴性白血病 | zh_TW |
| dc.subject | 活性氧族群 | zh_TW |
| dc.subject | HQ17(3) | zh_TW |
| dc.subject | 硫胱胺酸蛋白酶 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | reactive oxygen species (ROS) | en |
| dc.subject | acute lymphoblastic leukemia (ALL) | en |
| dc.subject | apoptosis | en |
| dc.subject | caspase | en |
| dc.subject | HQ17(3) | en |
| dc.title | 分析天然植物對苯二酚衍生物HQ17(3)對帶有t(4;11)染色體轉位急性淋巴性白血病細胞株RS4;11的影響 | zh_TW |
| dc.title | The Effects of Botanical Alkyl Hydroquinone Derivative HQ17(3) on Acute Lymphoblastic Leukemia Cell Line, RS4;11 Harboring t(4;11) Chromosome Translocation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林淑萍(Shwu-Bin Lin),林亮音(Liang-In Lin) | |
| dc.subject.keyword | 急性淋巴性白血病,HQ17(3),細胞凋亡,硫胱胺酸蛋白酶,活性氧族群, | zh_TW |
| dc.subject.keyword | acute lymphoblastic leukemia (ALL),HQ17(3),apoptosis,caspase,reactive oxygen species (ROS), | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
