Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37606
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor朱錦洲
dc.contributor.authorChun-Hsien Yangen
dc.contributor.author楊俊賢zh_TW
dc.date.accessioned2021-06-13T15:34:40Z-
dc.date.available2016-08-12
dc.date.copyright2011-08-12
dc.date.issued2011
dc.date.submitted2011-08-10
dc.identifier.citationAfdhal, N. H., & Nunes, D. (2004). Evaluation of liver fibrosis: a concise review. The American journal of gastroenterology, 99(6), 1160-1174.
Arthur, M. (2002). Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology, 122(5), 1525.
Bataller, R., & Brenner, D. A. (2005). Liver fibrosis. J Clin Invest, 115(2), 209-218.
Brunt, E. M. (2000). Grading and staging the histopathological lesions of chronic hepatitis: the Knodell histology activity index and beyond. Hepatology, 31(1), 241-246.
Cao, G., Shi, P., & Hu, B. (2005). Liver fibrosis identification based on ultrasound images captured under varied imaging protocols. Journal of Zhejiang University. Science. B, 6(11), 1107.
Cloutier, G., Soulez, G., Qanadli, S. D., Teppaz, P., Allard, L., Qin, Z., . . . Durand, L. G. (2004). A multimodality vascular imaging phantom with fiducial markers visible in DSA, CTA, MRA, and ultrasound. Medical physics, 31, 1424.
Conners, R. W., & Harlow, C. A. (1980). A theoretical comparison of texture algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence(3), 204-222.
Davis, G. L., Albright, J. E., Cook, S. F., & Rosenberg, D. M. (2003). Projecting future complications of chronic hepatitis C in the United States. Liver transplantation, 9(4), 331-338.
Du Buf, J., Kardan, M., & Spann, M. (1990). Texture feature performance for image segmentation. Pattern Recognition, 23(3-4), 291-309.
Fontana, R. J., & Lok, A. S. F. (2002). Noninvasive monitoring of patients with chronic hepatitis C. Hepatology, 36(5B), s57-s64.
Friedman, S. L. (2003). Liver fibrosis-from bench to bedside. Journal of hepatology, 38(1), 38.
Friedman, S. L., Roll, F. J., Boyles, J., & Bissell, D. M. (1985). Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proceedings of the National Academy of Sciences, 82(24), 8681.
Gilmore, R., Tam, K., Young, J., Howard, D., & Almond, E. (1986). Acoustic Microscopy from 10 to 100 MHz for Industrial Applications [and Discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 320(1554), 215-235.
Gines, P., Cardenas, A., Arroyo, V., & Rodes, J. (2004). Management of cirrhosis and ascites. New England Journal of Medicine, 350(16).
Goldberg, B. B., & Lehman, J. S. (1969). Some observations on the practical uses of A-mode ultrasound. Am J Roentgenol Radium Ther Nucl Med, 107, 198.
Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786-804.
Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 3(6), 610-621.
He, P. (1989). Acoustic attenuation estimation for soft tissue from ultrasound echo envelope peaks. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 36(2), 197-203.
Hill, C., & Ter Haar, G. (1995). High intensity focused ultrasound--potential for cancer treatment. British journal of radiology, 68(816), 1296.
Insana, M. F., Wagner, R. F., Garra, B. S., Momenan, R., & Shawker, T. H. (1986). Pattern recognition methods for optimizing multivariate tissue signatures in diagnostic ultrasound. Ultrasonic imaging, 8(3), 165-180.
Issa, R., Zhou, X., Constandinou, C. M., Fallowfield, J., Millward-Sadler, H., Gaca, M. D. A., . . . Knorr, A. (2004). Spontaneous recovery from micronodular cirrhosis: Evidence for incomplete resolution associated with matrix cross-linking* 1. Gastroenterology, 126(7), 1795-1808.
Jackson, V. (1990). The role of US in breast imaging. Radiology, 177(2), 305.
Kadah, Y. M., Farag, A. A., Zurada, J. M., Badawi, A. M., & Youssef, A. (1996). Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images. IEEE Transactions on Medical Imaging, 15(4), 466-478.
Kerr, A., & Hunt, J. (1992). A method for computer simulation of ultrasound Doppler color flow images--I. Theory and numerical method. Ultrasound in medicine & biology, 18(10), 861-872.
Kossoff, G. (1974). Display techniques in ultrasound pulse echo investigations: a review. Journal of Clinical Ultrasound, 2(1), 61-72.
Lin, T., Ophir, J., & Potter, G. (1987). Correlations of sound speed with tissue constituents in normal and diffuse liver disease. Ultrasonic imaging, 9(1), 29-40.
Lin, T., Ophir, J., & Potter, G. (1988). Correlation of ultrasonic attenuation with pathologic fat and fibrosis in liver disease. Ultrasound in medicine & biology, 14(8), 729-734.
Lu, Z. F., Zagzebski, J., & Lee, F. (1999). Ultrasound backscatter and attenuation in human liver with diffuse disease. Ultrasound in medicine & biology, 25(7), 1047-1054.
Meziri, M., Pereira, W., Abdelwahab, A., Degott, C., & Laugier, P. (2005). In vitro chronic hepatic disease characterization with a multiparametric ultrasonic approach. Ultrasonics, 43(5), 305-313.
Mojsilovic, A., Popovic, M., Markovic, S., & Krstic, M. (1998). Characterization of visually similar diffuse diseases from B-scan liver images using nonseparable wavelet transform. IEEE Transactions on Medical Imaging, 17(4), 541-549.
Nicholas, D., Nassiri, D., Garbutt, P., & Hill, C. (1986). Tissue characterization from ultrasound B-scan data. Ultrasound in medicine & biology, 12(2), 135-143.
Ogawa, K., Fukushima, M., Kubota, K., & Hisa, N. (1998). Computer-aided diagnostic system for diffuse liver diseases with ultrasonography by neural networks. IEEE Transactions on Nuclear Science, 45(6), 3069-3074.
Ploeckinger-Ulm, B., Ulm, M. R., Lee, A., Kratochwil, A., & Bernaschek, G. (1996). Antenatal depiction of fetal digits with three-dimensional ultrasonography. American journal of obstetrics and gynecology, 175(3), 571-574.
Popper, H., & Udenfriend, S. (1970). Hepatic fibrosis:: Correlation of biochemical and morphologic investigations. The American journal of medicine, 49(5), 707-721.
Saijo, Y., Tanaka, M., Okawai, H., Sasaki, H., Nitta, S. I., & Dunn, F. (1997). Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic microscopy. Ultrasound in medicine & biology, 23(1), 77-85.
Sandrin, L., Fourquet, B., Hasquenoph, J. M., Yon, S., Fournier, C., Mal, F., . . . Kazemi, F. (2003). Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound in medicine & biology, 29(12), 1705-1713.
Shankar, M. (2000). A general statistical model for ultrasonic backscattering from tissues. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 47(3), 727-736.
Shung, K. K., Smith, M. B., & Tsui, B. M. W. (1992). Principles of medical imaging: Academic Pr.
Shung, K. K., & Thieme, G. A. (1993). Ultrasonic scattering in biological tissues: CRC Press.
Soyer, M., Ceballos, R., & Aldrete, J. (1976). Reversibility of severe hepatic damage caused by jejunoileal bypass after re-establishment of normal intestinal continuity. Surgery, 79(5), 601.
Szabo, T. L. (2004). Diagnostic ultrasound imaging Burlington, MA: Elsevier Academic Press.
Turnbull, D. H., Starkoski, B. G., Harasiewicz, K. A., Semple, J. L., From, L., Gupta, A. K., . . . Foster, F. S. (1995). A 40-100 MHz B-scan ultrasound backscatter microscope for skin imaging. Ultrasound in medicine & biology, 21(1), 79-88.
Wang, L., & He, D. (1990). A new statistical approach for texture analysis. Photogrammetric Engineering and Remote Sensing, 56(1), 61-66.
Weszka, J. S., Dyer, C. R., & Rosenfeld, A. (1976). A comparative study of texture measures for terrain classification. IEEE Transactions on Systems, Man and Cybernetics(4), 269-285.
Wu, C. M., Chen, Y. C., & Hsieh, K. S. (1992). Texture features for classification of ultrasonic liver images. IEEE Transactions on Medical Imaging 11(2), 141-152.
Ye, S., Harasiewicz, K., Pavlin, C., & Foster, F. (1995). Ultrasound characterization of normal ocular tissue in the frequency range from 50 MHz to 100 MHz. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 42(1), 8-14.
Yeh, W. C. (2005). Ultrasonic Tissue Characterization of Liver.
Yeh, W. C., Huang, S. W., & Li, P. C. (2003). Liver fibrosis grade classification with B-mode ultrasound. Ultrasound in medicine & biology, 29(9), 1229-1235.
Yeh, W. C., Li, P. C., Jeng, Y. M., Hsu, H. C., Kuo, P. L., Li, M. L., . . . Lee, P. H. (2002). Elastic modulus measurements of human liver and correlation with pathology. Ultrasound in medicine & biology, 28(4), 467-474.
Yoshiji, H., Kuriyama, S., Yoshii, J., Ikenaka, Y., Noguchi, R., Nakatani, T., . . . Fukui, H. (2001). Angiotensin II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology, 34(4), 745-750.
余承霏. (2008). 使用起音波訊息理論熵定量生物組織特性. 國立臺灣大學.
李家瑋. (2006). 紋理分析於瑕疵偵測上的應用. 國立臺灣科技大學.
張家瑋. (2009). 使用超音波參數影像與紋理分析評分肝臟纖維化程度. 國立臺灣大學.
楊偉業. (2010). 以超音波Nakagami影像與組織基頻諧波能量比定量生物組織射子與介質特性. 國立臺灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37606-
dc.description.abstract超音波系統因為具有方便性、即時影像、非侵入性且成本相較於其它如核磁共振造影(MRI)或電腦斷層掃描(CT)系統來的低廉等優點,因此廣泛的應用在醫學影像診斷上,更成為第一線臨床診斷工具。有鑑於肝臟疾病目前在臨床診斷上除了做穿刺和切片檢查外,並無一套有效且精準可靠的非侵入式診斷方法,因此本研究以超音波B-mode影像做為切入點,並採用紋理分析方法,實驗的對象分為兩部分:第一部分為大鼠肝臟離體實驗,分為三組,分別以藥物誘發導致肝纖維化和脂肪肝,以及一組正常肝做為對照組,主旨在於以紋理特徵值在隨著藥物使用時間增加導致病情愈發嚴重下的趨勢變化。第二部分為臨床實驗部份,分別以線性探頭和弧形探頭取得的纖維化病例,且有做過切片採Metavir評分由0~4分做嚴重等級區分和對照,觀察各紋理特徵值隨著病情嚴重程度的趨勢變化。
本研究採用的紋理分析方法以Haralick學者於1973年所提出的灰階共生矩陣(GLCM)方法對B-mode影像進行分析並計算其11個特徵值。GLCM為計算一影像紋理在一相對位置下像素間的灰階值關係,排成一機率分佈矩陣,由此矩陣可得知在某相對位置下像素對的灰階值關係為i和j出現的機率大小。再由GLCM算出以下11個特徵值,分別為:能量(Energy)、對比度(Contrast)、相關性(Correlation)、熵(Entropy)、均質性(Homogeneity)、變異數(Variance)、平均和(Sum Average)、變異數和(Sum Variance)、熵和(Sum Entropy)、變異數差(Difference Variance)和熵差(Difference Entropy)。
在大鼠肝臟離體實驗中,結果發現各時期的正常肝在11個特徵值下皆維持一定值,由此可知正常肝臟有其固定的紋理,能做為基準值和肝臟發生病變的紋理特徵值做一比較。而肝纖維化和脂肪肝在各個特徵值下雖有趨勢但走向相同,僅能在數值大小上略做區分,無法單以和正常肝之間的趨勢判定是肝纖維化或脂肪肝。另外在臨床實驗方面,各紋理特徵值隨著病情嚴重程度的趨勢變化在判別無纖維化(Metavir評分0分)和有纖維化(Metavir評分1~4分)效果顯著,但針對纖維化間各程度區分則較為困難。
zh_TW
dc.description.abstractDue to the advantages of its convenience, instantaneity, non-invasion and low cost than other systems such as MRI or CT, ultrasound system is widely applied to medical imaging diagnosis, and becomes the first choice for clinical diagnosis. Because there is hardly any effective and specific non-invasive way to diagnose the liver diseases except doing biopsy, this research will cut into the point by using B-mode and adopting texture analysis. There are two parts in this experiment: the first part is the in vitro rat experiment which divides the rats into three groups: induced fibrosis liver by medicine injection, induced fatty liver by medicine feeding and the normal liver as the control group. The second part is the cases of clinical experiments. We obtain the fibrosis cases by linear array and convex array transducer, adopting Metavir score from 0~4 as the assessment for the degree of severity after doing biopsy, and investigate the texture features along with the degree of severity.
This study uses gray level co-occurrence matrix (GLCM), which was proposed by Haralick in 1973, to analyze B-mode image and calculate the 11 texture features. GLCM is computed for various angular relationships and distances between neighboring pixel pairs on the image. Therefore we can know the probability of pixel pairs of gray level relationship as i and j in GLCM. 11 texture features was extracted from GLCM, including Energy, Contrast, Correlation, Entropy, Homogeneity, Variance, Sum Average, Sum Variance, Sum Entropy, Difference Variance and Difference Entropy.
In the in vitro rat experiment, we found that the trend of texture features along with the degree of severity maintained at a stable level in the normal control group, concluding that the normal liver has stationary texture features and could be considered as a control in comparison with diseased livers. Whereas the texture features of the fibrosis and fatty liver groups proceeded in a similar trend. Therefore we can separate the normal livers from fibrosis and fatty livers, but failing to separate fibrosis and fatty liver. In the clinical experiments, we found that the texture features have good performances to separate the non-fibrosis (Metavir score 0) and fibrosis (Metavir score 1 to 4), but they could hardly identify the fibrosis degrees.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:34:40Z (GMT). No. of bitstreams: 1
ntu-100-R98543050-1.pdf: 14293039 bytes, checksum: 1bc10794a7f9a653132f8f09485a452a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xiii
第1章 序論 1
1.1 前言 1
1.2 研究背景 4
1.2.1 醫用超音波之發展 4
1.2.2 肝臟纖維化及肝細胞脂肪變性 5
1.3 文獻回顧 6
1.4 研究目的 8
第2章 理論基礎 9
2.1 超音波原理及簡介 9
2.1.1 聲波傳遞的基本原理 9
2.1.2 衰減 12
2.1.3 反射與折射 13
2.1.4 超音波換能器與聲場 15
2.2 超音波散射分析 19
2.2.1 超音波散射(scattering)現象 19
2.2.2 單一散射子分析 19
2.2.3 多散射子分析 21
2.3 超音波影像 23
2.3.1 成像過程 23
2.3.2 影像軸向解析度 25
2.3.3 影像側向解析度 26
2.4 紋理分析 28
2.4.1 紋理簡介 28
2.4.2 灰度共生矩陣(Gray Level Co-occurrence Matrix, GLCM) 28
2.4.3 紋理特徵值 32
2.5 肝臟纖維化的病理機制和切片檢查法 39
2.5.1 肝臟纖維化的病理機制 39
2.5.2 活體切片檢查法 41
第3章 實驗材料與方法 43
3.1 動物實驗 43
3.1.1 動物 43
3.1.2 注射藥物方式 43
3.1.3 超音波系統架構 45
3.1.4 實驗流程 50
3.1.5 病理切片 51
3.2 臨床實驗 53
3.2.1 病人資訊與收案方式 53
3.2.2 Terason t3000超音波設備 55
3.3 ROI分析 56
3.3.1 老鼠肝臟超音波影像ROI分析 57
3.3.2 臨床病人肝臟超音波影像ROI分析 62
3.4 演算法流程 70
第4章 實驗結果與討論 71
4.1 大鼠肝臟離體實驗 71
4.2 臨床線性陣列探頭實驗 80
4.2.1 箱線圖 80
4.2.2 各特徵值AUC比較 88
4.3 臨床弧形陣列探頭實驗 93
4.3.1 箱線圖 94
4.3.2 各特徵值AUC 100
第5章 結論與未來展望 104
5.1 結論 104
5.2 未來展望 105
參考資料 106
附錄A-大鼠肝臟離體實驗 A.1
附錄B-臨床線性陣列探頭實驗 B.1
附錄C-臨床弧形陣列探頭實驗 C.1
dc.language.isozh-TW
dc.subjectGLCMzh_TW
dc.subject超音波B-mode影像zh_TW
dc.subject肝纖維化zh_TW
dc.subject脂肪肝zh_TW
dc.subject紋理分析zh_TW
dc.subjectUltrasound B-modeen
dc.subjectGLCMen
dc.subjectTexture analysisen
dc.subjectFatty liveren
dc.subjectLiver fibrosisen
dc.title使用超音波影像紋理分析識別肝纖維化與脂肪化病灶zh_TW
dc.titleUsing texture analysis of ultrasound imaging to detect fibrotic and fatty liversen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor張建成
dc.contributor.oralexamcommittee林真真,崔博翔,黃執中,舒宇宸
dc.subject.keyword超音波B-mode影像,肝纖維化,脂肪肝,紋理分析,GLCM,zh_TW
dc.subject.keywordUltrasound B-mode,Liver fibrosis,Fatty liver,Texture analysis,GLCM,en
dc.relation.page110
dc.rights.note有償授權
dc.date.accepted2011-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
Appears in Collections:應用力學研究所

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
13.96 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved