請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37590
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳忠勳 | |
dc.contributor.author | Ming-Cheng Lee | en |
dc.contributor.author | 李明城 | zh_TW |
dc.date.accessioned | 2021-06-13T15:33:59Z | - |
dc.date.available | 2008-08-13 | |
dc.date.copyright | 2008-08-13 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-12 | |
dc.identifier.citation | 1. Terblanche, M., Almog, Y., Rosenson, R.S., Smith, T.S. and Hackam, D.G. (2006) Statins: panacea for sepsis? Lancet Infect Dis, 6, 242-248.
2. Aird, W.C. (2003) The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood, 101, 3765-3777. 3. Guha, M. and Mackman, N. (2001) LPS induction of gene expression in human monocytes. Cell Signal, 13, 85-94. 4. Bjorkbacka, H., Fitzgerald, K.A., Huet, F., Li, X., Gregory, J.A., Lee, M.A., Ordija, C.M., Dowley, N.E., Golenbock, D.T. and Freeman, M.W. (2004) The induction of macrophage gene expression by LPS predominantly utilizes Myd88-independent signaling cascades. Physiol Genomics, 19, 319-330. 5. Hashimoto, S., Morohoshi, K., Suzuki, T. and Matsushima, K. (2003) Lipopolysaccharide-inducible gene expression profile in human monocytes. Scand J Infect Dis, 35, 619-627. 6. Giroir, B.P., Johnson, J.H., Brown, T., Allen, G.L. and Beutler, B. (1992) The tissue distribution of tumor necrosis factor biosynthesis during endotoxemia. J Clin Invest, 90, 693-698. 7. Fitting, C., Dhawan, S. and Cavaillon, J.M. (2004) Compartmentalization of tolerance to endotoxin. J Infect Dis, 189, 1295-1303. 8. Cirelli, R.A., Carey, L.A., Fisher, J.K., Rosolia, D.L., Elsasser, T.H., Caperna, T.J., Gee, M.H. and Albertine, K.H. (1995) Endotoxin infusion in anesthetized sheep is associated with intrapulmonary sequestration of leukocytes that immunohistochemically express tumor necrosis factor-alpha. J Leukoc Biol, 57, 820-826. 9. Ge, Y., Ezzell, R.M., Clark, B.D., Loiselle, P.M., Amato, S.F. and Warren, H.S. (1997) Relationship of tissue and cellular interleukin-1 and lipopolysaccharide after endotoxemia and bacteremia. J Infect Dis, 176, 1313-1321. 10. Munoz, C., Carlet, J., Fitting, C., Misset, B., Bleriot, J.P. and Cavaillon, J.M. (1991) Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest, 88, 1747-1754. 11. Panacek, E.A., Marshall, J.C., Albertson, T.E., Johnson, D.H., Johnson, S., MacArthur, R.D., Miller, M., Barchuk, W.T., Fischkoff, S., Kaul, M. et al. (2004) Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab')2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit Care Med, 32, 2173-2182. 12. Bernard, G.R., Vincent, J.L., Laterre, P.F., LaRosa, S.P., Dhainaut, J.F., Lopez-Rodriguez, A., Steingrub, J.S., Garber, G.E., Helterbrand, J.D., Ely, E.W. et al. (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med, 344, 699-709. 13. Itaya, H., Imaizumi, T., Yoshida, H., Koyama, M., Suzuki, S. and Satoh, K. (2001) Expression of vascular endothelial growth factor in human monocyte/macrophages stimulated with lipopolysaccharide. Thromb Haemost, 85, 171-176. 14. Ferrara, N. and Davis-Smyth, T. (1997) The biology of vascular endothelial growth factor. Endocr Rev, 18, 4-25. 15. Kim, I., Moon, S.O., Kim, S.H., Kim, H.J., Koh, Y.S. and Koh, G.Y. (2001) Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem, 276, 7614-7620. 16. Barleon, B., Sozzani, S., Zhou, D., Weich, H.A., Mantovani, A. and Marme, D. (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood, 87, 3336-3343. 17. van der Flier, M., van Leeuwen, H.J., van Kessel, K.P., Kimpen, J.L., Hoepelman, A.I. and Geelen, S.P. (2005) Plasma vascular endothelial growth factor in severe sepsis. Shock, 23, 35-38. 18. Pickkers, P., Sprong, T., Eijk, L., Hoeven, H., Smits, P. and Deuren, M. (2005) Vascular endothelial growth factor is increased during the first 48 hours of human septic shock and correlates with vascular permeability. Shock, 24, 508-512. 19. Claesson-Welsh, L. (2003) Signal transduction by vascular endothelial growth factor receptors. Biochem Soc Trans, 31, 20-24. 20. Shalaby, F., Rossant, J., Yamaguchi, T.P., Gertsenstein, M., Wu, X.F., Breitman, M.L. and Schuh, A.C. (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 376, 62-66. 21. Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N.P., Risau, W. and Ullrich, A. (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell, 72, 835-846. 22. Clauss, M., Weich, H., Breier, G., Knies, U., Rockl, W., Waltenberger, J. and Risau, W. (1996) The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem, 271, 17629-17634. 23. Kondo, K., Hiratsuka, S., Subbalakshmi, E., Matsushime, H. and Shibuya, M. (1998) Genomic organization of the flt-1 gene encoding for vascular endothelial growth factor (VEGF) receptor-1 suggests an intimate evolutionary relationship between the 7-Ig and the 5-Ig tyrosine kinase receptors. Gene, 208, 297-305. 24. Kendall, R.L. and Thomas, K.A. (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A, 90, 10705-10709. 25. Huckle, W.R. and Roche, R.I. (2004) Post-transcriptional control of expression of sFlt-1, an endogenous inhibitor of vascular endothelial growth factor. J Cell Biochem, 93, 120-132. 26. Graubert, M.D., Ortega, M.A., Kessel, B., Mortola, J.F. and Iruela-Arispe, M.L. (2001) Vascular repair after menstruation involves regulation of vascular endothelial growth factor-receptor phosphorylation by sFLT-1. Am J Pathol, 158, 1399-1410. 27. Du, M., Roy, K.M., Zhong, L., Shen, Z., Meyers, H.E. and Nichols, R.C. (2006) VEGF gene expression is regulated post-transcriptionally in macrophages. Febs J, 273, 732-745. 28. Luttun, A., Tjwa, M., Moons, L., Wu, Y., Angelillo-Scherrer, A., Liao, F., Nagy, J.A., Hooper, A., Priller, J., De Klerck, B. et al. (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med, 8, 831-840. 29. Levy, N.S., Chung, S., Furneaux, H. and Levy, A.P. (1998) Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem, 273, 6417-6423. 30. Kiriakidis, S., Andreakos, E., Monaco, C., Foxwell, B., Feldmann, M. and Paleolog, E. (2003) VEGF expression in human macrophages is NF-kappaB-dependent: studies using adenoviruses expressing the endogenous NF-kappaB inhibitor IkappaBalpha and a kinase-defective form of the IkappaB kinase 2. J Cell Sci, 116, 665-674. 31. Sakuta, T., Matsushita, K., Yamaguchi, N., Oyama, T., Motani, R., Koga, T., Nagaoka, S., Abeyama, K., Maruyama, I., Takada, H. et al. (2001) Enhanced production of vascular endothelial growth factor by human monocytic cells stimulated with endotoxin through transcription factor SP-1. J Med Microbiol, 50, 233-237. 32. Kontny, E., Kurowska, M., Szczepanska, K. and Maslinski, W. (2000) Rottlerin, a PKC isozyme-selective inhibitor, affects signaling events and cytokine production in human monocytes. J Leukoc Biol, 67, 249-258. 33. Meng, F. and Lowell, C.A. (1997) Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J Exp Med, 185, 1661-1670. 34. Barbour, S.E., Wong, C., Rabah, D., Kapur, A. and Carter, A.D. (1998) Mature macrophage cell lines exhibit variable responses to LPS. Mol Immunol, 35, 977-987. 35. Hamilton, J.A., Byrne, R., Whitty, G., Vadiveloo, P.K., Marmy, N., Pearson, R.B., Christy, E. and Jaworowski, A. (1998) Effects of wortmannin and rapamycin on CSF-1-mediated responses in macrophages. Int J Biochem Cell Biol, 30, 271-283. 36. Maron, D.J., Fazio, S. and Linton, M.F. (2000) Current perspectives on statins. Circulation, 101, 207-213. 37. Pahan, K., Sheikh, F.G., Namboodiri, A.M. and Singh, I. (1997) Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest, 100, 2671-2679. 38. Merx, M.W., Liehn, E.A., Janssens, U., Lutticken, R., Schrader, J., Hanrath, P. and Weber, C. (2004) HMG-CoA reductase inhibitor simvastatin profoundly improves survival in a murine model of sepsis. Circulation, 109, 2560-2565. 39. Almog, Y., Shefer, A., Novack, V., Maimon, N., Barski, L., Eizinger, M., Friger, M., Zeller, L. and Danon, A. (2004) Prior statin therapy is associated with a decreased rate of severe sepsis. Circulation, 110, 880-885. 40. Alber, H.F., Dulak, J., Frick, M., Dichtl, W., Schwarzacher, S.P., Pachinger, O. and Weidinger, F. (2002) Atorvastatin decreases vascular endothelial growth factor in patients with coronary artery disease. J Am Coll Cardiol, 39, 1951-1955. 41. Kodama, Y., Kitta, Y., Nakamura, T., Takano, H., Umetani, K., Fujioka, D., Saito, Y., Kawabata, K., Obata, J.E., Mende, A. et al. (2006) Atorvastatin increases plasma soluble Fms-like tyrosine kinase-1 and decreases vascular endothelial growth factor and placental growth factor in association with improvement of ventricular function in acute myocardial infarction. J Am Coll Cardiol, 48, 43-50. 42. Cavaillon, J.M. and Adib-Conquy, M. (2005) Monocytes/macrophages and sepsis. Crit Care Med, 33, S506-509. 43. Rafat, N., Hanusch, C., Brinkkoetter, P.T., Schulte, J., Brade, J., Zijlstra, J.G., van der Woude, F.J., van Ackern, K., Yard, B.A. and Beck, G. (2007) Increased circulating endothelial progenitor cells in septic patients: correlation with survival. Crit Care Med, 35, 1677-1684. 44. Shapiro, N.I., Yano, K., Okada, H., Fischer, C., Howell, M., Spokes, K.C., Ngo, L., Angus, D.C. and Aird, W.C. (2007) A Prospective, Observational Study of Soluble Flt-1 and Vascular Endothelial Growth Factor in Sepsis. Shock, Publish Ahead of Print. 45. Nolan, A., Weiden, M.D., Thurston, G. and Gold, J.A. (2004) Vascular endothelial growth factor blockade reduces plasma cytokines in a murine model of polymicrobial sepsis. Inflammation, 28, 271-278. 46. Tsao, P.N., Chan, F.T., Wei, S.C., Hsieh, W.S., Chou, H.C., Su, Y.N., Chen, C.Y., Hsu, W.M., Hsieh, F.J. and Hsu, S.M. (2007) Soluble vascular endothelial growth factor receptor-1 protects mice in sepsis. Crit Care Med, 35, 1955-1960. 47. Yano, K., Liaw, P.C., Mullington, J.M., Shih, S.C., Okada, H., Bodyak, N., Kang, P.M., Toltl, L., Belikoff, B., Buras, J. et al. (2006) Vascular endothelial growth factor is an important determinant of sepsis morbidity and mortality. J Exp Med, 203, 1447-1458. 48. Aksoy, E., Goldman, M. and Willems, F. (2004) Protein kinase C epsilon: a new target to control inflammation and immune-mediated disorders. Int J Biochem Cell Biol, 36, 183-188. 49. Way, K.J., Chou, E. and King, G.L. (2000) Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci, 21, 181-187. 50. Li, W., Yu, J.C., Shin, D.Y. and Pierce, J.H. (1995) Characterization of a protein kinase C-delta (PKC-delta) ATP binding mutant. An inactive enzyme that competitively inhibits wild type PKC-delta enzymatic activity. J Biol Chem, 270, 8311-8318. 51. Lin, W.W. and Chen, B.C. (1998) Distinct PKC isoforms mediate the activation of cPLA2 and adenylyl cyclase by phorbol ester in RAW264.7 macrophages. Br J Pharmacol, 125, 1601-1609. 52. Kim, B.C., Jeon, W.K., Hong, H.Y., Jeon, K.B., Hahn, J.H., Kim, Y.M., Numazawa, S., Yosida, T., Park, E.H. and Lim, C.J. (2007) The anti-inflammatory activity of Phellinus linteus (Berk. & M.A. Curt.) is mediated through the PKCdelta/Nrf2/ARE signaling to up-regulation of heme oxygenase-1. J Ethnopharmacol, 113, 240-247. 53. Hirschfeld, M., Ma, Y., Weis, J.H., Vogel, S.N. and Weis, J.J. (2000) Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol, 165, 618-622. 54. Toullec, D., Pianetti, P., Coste, H., Bellevergue, P., Grand-Perret, T., Ajakane, M., Baudet, V., Boissin, P., Boursier, E., Loriolle, F. et al. (1991) The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem, 266, 15771-15781. 55. Martiny-Baron, G., Kazanietz, M.G., Mischak, H., Blumberg, P.M., Kochs, G., Hug, H., Marme, D. and Schachtele, C. (1993) Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J Biol Chem, 268, 9194-9197. 56. Gschwendt, M., Muller, H.J., Kielbassa, K., Zang, R., Kittstein, W., Rincke, G. and Marks, F. (1994) Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun, 199, 93-98. 57. De Ponti, C., Carini, R., Alchera, E., Nitti, M.P., Locati, M., Albano, E., Cairo, G. and Tacchini, L. (2007) Adenosine A2a receptor-mediated, normoxic induction of HIF-1 through PKC and PI-3K-dependent pathways in macrophages. J Leukoc Biol, 82, 392-402. 58. Bian, Z.M., Elner, S.G. and Elner, V.M. (2007) Regulation of VEGF mRNA expression and protein secretion by TGF-beta2 in human retinal pigment epithelial cells. Exp Eye Res, 84, 812-822. 59. Textor, B., Sator-Schmitt, M., Richter, K.H., Angel, P. and Schorpp-Kistner, M. (2006) c-Jun and JunB are essential for hypoglycemia-mediated VEGF induction. Ann N Y Acad Sci, 1091, 310-318. 60. Hoshi, S., Nomoto, K., Kuromitsu, J., Tomari, S. and Nagata, M. (2002) High glucose induced VEGF expression via PKC and ERK in glomerular podocytes. Biochem Biophys Res Commun, 290, 177-184. 61. Shih, S.C., Mullen, A., Abrams, K., Mukhopadhyay, D. and Claffey, K.P. (1999) Role of protein kinase C isoforms in phorbol ester-induced vascular endothelial growth factor expression in human glioblastoma cells. J Biol Chem, 274, 15407-15414. 62. Goldstein, J.L. and Brown, M.S. (1990) Regulation of the mevalonate pathway. Nature, 343, 425-430. 63. Chua, D., Tsang, R.S. and Kuo, I.F. (2007) The role of statin therapy in sepsis. Ann Pharmacother, 41, 647-652. 64. Terblanche, M., Almog, Y., Rosenson, R.S., Smith, T.S. and Hackam, D.G. (2007) Statins and sepsis: multiple modifications at multiple levels. Lancet Infect Dis, 7, 358-368. 65. Ando, H., Takamura, T., Ota, T., Nagai, Y. and Kobayashi, K. (2000) Cerivastatin improves survival of mice with lipopolysaccharide-induced sepsis. J Pharmacol Exp Ther, 294, 1043-1046. 66. Kleemann, R., Verschuren, L., de Rooij, B.J., Lindeman, J., de Maat, M.M., Szalai, A.J., Princen, H.M. and Kooistra, T. (2004) Evidence for anti-inflammatory activity of statins and PPARalpha activators in human C-reactive protein transgenic mice in vivo and in cultured human hepatocytes in vitro. Blood, 103, 4188-4194. 67. Matsumoto, M., Einhaus, D., Gold, E.S. and Aderem, A. (2004) Simvastatin augments lipopolysaccharide-induced proinflammatory responses in macrophages by differential regulation of the c-Fos and c-Jun transcription factors. J Immunol, 172, 7377-7384. 68. Chen, J.C., Huang, K.C. and Lin, W.W. (2006) HMG-CoA reductase inhibitors upregulate heme oxygenase-1 expression in murine RAW264.7 macrophages via ERK, p38 MAPK and protein kinase G pathways. Cell Signal, 18, 32-39. 69. Weitz-Schmidt, G., Welzenbach, K., Brinkmann, V., Kamata, T., Kallen, J., Bruns, C., Cottens, S., Takada, Y. and Hommel, U. (2001) Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med, 7, 687-692. 70. Merx, M.W., Liehn, E.A., Graf, J., van de Sandt, A., Schaltenbrand, M., Schrader, J., Hanrath, P. and Weber, C. (2005) Statin treatment after onset of sepsis in a murine model improves survival. Circulation, 112, 117-124. 71. Lane, K.T. and Beese, L.S. (2006) Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res, 47, 681-699. 72. Shibuya, M. (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis, 9, 225-230; discussion 231. 73. Monick, M.M., Powers, L.S., Butler, N.S. and Hunninghake, G.W. (2003) Inhibition of Rho family GTPases results in increased TNF-alpha production after lipopolysaccharide exposure. J Immunol, 171, 2625-2630. 74. Pozo, M., de Nicolas, R., Egido, J. and Gonzalez-Cabrero, J. (2006) Simvastatin inhibits the migration and adhesion of monocytic cells and disorganizes the cytoskeleton of activated endothelial cells. Eur J Pharmacol, 548, 53-63. 75. Frey, T. and De Maio, A. (2007) Increased expression of CD14 in macrophages after inhibition of the cholesterol biosynthetic pathway by lovastatin. Mol Med, 13, 592-604. 76. Argmann, C.A., Edwards, J.Y., Sawyez, C.G., O'Neil, C.H., Hegele, R.A., Pickering, J.G. and Huff, M.W. (2005) Regulation of macrophage cholesterol efflux through hydroxymethylglutaryl-CoA reductase inhibition: a role for RhoA in ABCA1-mediated cholesterol efflux. J Biol Chem, 280, 22212-22221. 77. Sakamoto, K., Honda, T., Yokoya, S., Waguri, S. and Kimura, J. (2007) Rab-small GTPases are involved in fluvastatin and pravastatin-induced vacuolation in rat skeletal myofibers. Faseb J, 21, 4087-4094. 78. Scherle, P.A., Jones, E.A., Favata, M.F., Daulerio, A.J., Covington, M.B., Nurnberg, S.A., Magolda, R.L. and Trzaskos, J.M. (1998) Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes. J Immunol, 161, 5681-5686. 79. Ajizian, S.J., English, B.K. and Meals, E.A. (1999) Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. J Infect Dis, 179, 939-944. 80. Chanteux, H., Guisset, A.C., Pilette, C. and Sibille, Y. (2007) LPS induces IL-10 production by human alveolar macrophages via MAPKinases- and Sp1-dependent mechanisms. Respir Res, 8, 71. 81. Dumitru, C.D., Ceci, J.D., Tsatsanis, C., Kontoyiannis, D., Stamatakis, K., Lin, J.H., Patriotis, C., Jenkins, N.A., Copeland, N.G., Kollias, G. et al. (2000) TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell, 103, 1071-1083. 82. Kwak, B., Mulhaupt, F., Myit, S. and Mach, F. (2000) Statins as a newly recognized type of immunomodulator. Nat Med, 6, 1399-1402. 83. Methe, H., Kim, J.O., Kofler, S., Nabauer, M. and Weis, M. (2005) Statins decrease Toll-like receptor 4 expression and downstream signaling in human CD14+ monocytes. Arterioscler Thromb Vasc Biol, 25, 1439-1445. 84. Niessner, A., Steiner, S., Speidl, W.S., Pleiner, J., Seidinger, D., Maurer, G., Goronzy, J.J., Weyand, C.M., Kopp, C.W., Huber, K. et al. (2006) Simvastatin suppresses endotoxin-induced upregulation of toll-like receptors 4 and 2 in vivo. Atherosclerosis, 189, 408-413. 85. Yilmaz, A., Reiss, C., Weng, A., Cicha, I., Stumpf, C., Steinkasserer, A., Daniel, W.G. and Garlichs, C.D. (2006) Differential effects of statins on relevant functions of human monocyte-derived dendritic cells. J Leukoc Biol, 79, 529-538. 86. Vamvakopoulos, J.E. and Green, C. (2003) HMG-CoA reductase inhibition aborts functional differentiation and triggers apoptosis in cultured primary human monocytes: a potential mechanism of statin-mediated vasculoprotection. BMC Cardiovasc Disord, 3, 6. 87. Liang, S.L., Liu, H. and Zhou, A. (2006) Lovastatin-induced apoptosis in macrophages through the Rac1/Cdc42/JNK pathway. J Immunol, 177, 651-656. 88. Chatterjee, A., Freeman, J.W. and Busch, H. (1987) Identification and partial characterization of a Mr 40,000 nucleolar antigen associated with cell proliferation. Cancer Res, 47, 1123-1129. 89. Huber, M.D., Dworet, J.H., Shire, K., Frappier, L. and McAlear, M.A. (2000) The budding yeast homolog of the human EBNA1-binding protein 2 (Ebp2p) is an essential nucleolar protein required for pre-rRNA processing. J Biol Chem, 275, 28764-28773. 90. Tsujii, R., Miyoshi, K., Tsuno, A., Matsui, Y., Toh-e, A., Miyakawa, T. and Mizuta, K. (2000) Ebp2p, yeast homologue of a human protein that interacts with Epstein-Barr virus nuclear antigen 1, is required for pre-rRNA processing and ribosomal subunit assembly. Genes Cells, 5, 543-553. 91. Rawlins, D.R., Milman, G., Hayward, S.D. and Hayward, G.S. (1985) Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell, 42, 859-868. 92. Shire, K., Ceccarelli, D.F., Avolio-Hunter, T.M. and Frappier, L. (1999) EBP2, a human protein that interacts with sequences of the Epstein-Barr virus nuclear antigen 1 important for plasmid maintenance. J Virol, 73, 2587-2595. 93. Wu, H., Ceccarelli, D.F. and Frappier, L. (2000) The DNA segregation mechanism of Epstein-Barr virus nuclear antigen 1. EMBO Rep, 1, 140-144. 94. Reimers, K., Antoine, M., Zapatka, M., Blecken, V., Dickson, C. and Kiefer, P. (2001) NoBP, a nuclear fibroblast growth factor 3 binding protein, is cell cycle regulated and promotes cell growth. Mol Cell Biol, 21, 4996-5007. 95. Berthet, C., Aleem, E., Coppola, V., Tessarollo, L. and Kaldis, P. (2003) Cdk2 knockout mice are viable. Curr Biol, 13, 1775-1785. 96. Ortega, S., Prieto, I., Odajima, J., Martin, A., Dubus, P., Sotillo, R., Barbero, J.L., Malumbres, M. and Barbacid, M. (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet, 35, 25-31. 97. Geng, Y., Yu, Q., Sicinska, E., Das, M., Schneider, J.E., Bhattacharya, S., Rideout, W.M., Bronson, R.T., Gardner, H. and Sicinski, P. (2003) Cyclin E ablation in the mouse. Cell, 114, 431-443. 98. Geisen, C. and Moroy, T. (2002) The oncogenic activity of cyclin E is not confined to Cdk2 activation alone but relies on several other, distinct functions of the protein. J Biol Chem, 277, 39909-39918. 99. Geng, Y., Lee, Y.M., Welcker, M., Swanger, J., Zagozdzon, A., Winer, J.D., Roberts, J.M., Kaldis, P., Clurman, B.E. and Sicinski, P. (2007) Kinase-independent function of cyclin E. Mol Cell, 25, 127-139. 100. Matsumoto, Y. and Maller, J.L. (2004) A centrosomal localization signal in cyclin E required for Cdk2-independent S phase entry. Science, 306, 885-888. 101. Duensing, A., Liu, Y., Tseng, M., Malumbres, M., Barbacid, M. and Duensing, S. (2006) Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene, 25, 2943-2949. 102. Hwang, H.C. and Clurman, B.E. (2005) Cyclin E in normal and neoplastic cell cycles. Oncogene, 24, 2776-2786. 103. Spruck, C.H., Won, K.A. and Reed, S.I. (1999) Deregulated cyclin E induces chromosome instability. Nature, 401, 297-300. 104. Kawamura, K., Izumi, H., Ma, Z., Ikeda, R., Moriyama, M., Tanaka, T., Nojima, T., Levin, L.S., Fujikawa-Yamamoto, K., Suzuki, K. et al. (2004), Cancer Res, Vol. 64, pp. 4800-4809. 105. Loeb, K.R., Kostner, H., Firpo, E., Norwood, T., K, D.T., Clurman, B.E. and Roberts, J.M. (2005) A mouse model for cyclin E-dependent genetic instability and tumorigenesis. Cancer Cell, 8, 35-47. 106. Minella, A.C., Swanger, J., Bryant, E., Welcker, M., Hwang, H. and Clurman, B.E. (2002) p53 and p21 form an inducible barrier that protects cells against cyclin E-cdk2 deregulation. Curr Biol, 12, 1817-1827. 107. Carroll, P.E., Okuda, M., Horn, H.F., Biddinger, P., Stambrook, P.J., Gleich, L.L., Li, Y.Q., Tarapore, P. and Fukasawa, K. (1999) Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene, 18, 1935-1944. 108. Cheng, K.C. and Loeb, L.A. (1993) Genomic instability and tumor progression: mechanistic considerations. Adv Cancer Res, 60, 121-156. 109. Fukasawa, K. (2005) Centrosome amplification, chromosome instability and cancer development. Cancer Lett, 230, 6-19. 110. D'Assoro, A.B., Lingle, W.L. and Salisbury, J.L. (2002) Centrosome amplification and the development of cancer. Oncogene, 21, 6146-6153. 111. Hontz, A.E., Li, S.A., Lingle, W.L., Negron, V., Bruzek, A., Salisbury, J.L. and Li, J.J. (2007) Aurora A and B Overexpression and Centrosome Amplification in Early Estrogen-Induced Tumor Foci in the Syrian Hamster Kidney: Implications for Chromosomal Instability, Aneuploidy, and Neoplasia. Cancer Res, 67, 2957-2963. 112. Ohbayashi, T., Oikawa, K., Yamada, K., Nishida-Umehara, C., Matsuda, Y., Satoh, H., Mukai, H., Mukai, K. and Kuroda, M. (2007) Unscheduled overexpression of human WAPL promotes chromosomal instability. Biochem Biophys Res Commun, 356, 699-704. 113. Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., Lowe, S.W. and Benezra, R. (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 11, 9-23. 114. Yamamoto, Y., Matsuyama, H., Kawauchi, S., Matsumoto, H., Nagao, K., Ohmi, C., Sakano, S., Furuya, T., Oga, A., Naito, K. et al. (2006) Overexpression of polo-like kinase 1 (PLK1) and chromosomal instability in bladder cancer. Oncology, 70, 231-237. 115. Yamamoto, Y., Matsuyama, H., Chochi, Y., Okuda, M., Kawauchi, S., Inoue, R., Furuya, T., Oga, A., Naito, K. and Sasaki, K. (2007) Overexpression of BUBR1 is associated with chromosomal instability in bladder cancer. Cancer Genet Cytogenet, 174, 42-47. 116. Ionescu, C.N., Origanti, S. and McAlear, M.A. (2004) The yeast rRNA biosynthesis factor Ebp2p is also required for efficient nuclear division. Yeast, 21, 1219-1232. 117. Kapoor, P., Lavoie, B.D. and Frappier, L. (2005) EBP2 plays a key role in Epstein-Barr virus mitotic segregation and is regulated by aurora family kinases. Mol Cell Biol, 25, 4934-4945. 118. Bayani, J., Selvarajah, S., Maire, G., Vukovic, B., Al-Romaih, K., Zielenska, M. and Squire, J.A. (2007) Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin Cancer Biol, 17, 5-18. 119. Suganuma, M., Kuzuhara, T., Yamaguchi, K. and Fujiki, H. (2006) Carcinogenic role of tumor necrosis factor-alpha inducing protein of Helicobacter pylori in human stomach. J Biochem Mol Biol, 39, 1-8. 120. Gong, J., Ardelt, B., Traganos, F. and Darzynkiewicz, Z. (1994) Unscheduled expression of cyclin B1 and cyclin E in several leukemic and solid tumor cell lines. Cancer Res, 54, 4285-4288. 121. Mazumder, S., Gong, B., Chen, Q., Drazba, J.A., Buchsbaum, J.C. and Almasan, A. (2002) Proteolytic cleavage of cyclin E leads to inactivation of associated kinase activity and amplification of apoptosis in hematopoietic cells. Mol Cell Biol, 22, 2398-2409. 122. Abbondanzo, S.J., Gadi, I. and Stewart, C.L. (1993) Derivation of embryonic stem cell lines. Methods Enzymol, 225, 803-823. 123. Giaccia, A.J. and Kastan, M.B. (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev, 12, 2973-2983. 124. Moroy, T. and Geisen, C. (2004) Cyclin E. Int J Biochem Cell Biol, 36, 1424-1439. 125. Nguyen Tle, X. and Ahn, J.Y. (2007) Lipase inactive mutant of PLC-gamma1 regulates NGF-induced neurite outgrowth via enzymatic activity and regulation of cell cycle regulatory proteins. J Biochem Mol Biol, 40, 888-894. 126. Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100, 57-70. 127. Schraml, P., Bucher, C., Bissig, H., Nocito, A., Haas, P., Wilber, K., Seelig, S., Kononen, J., Mihatsch, M.J., Dirnhofer, S. et al. (2003) Cyclin E overexpression and amplification in human tumours. J Pathol, 200, 375-382. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37590 | - |
dc.description.abstract | 人體內單核球細胞(monocytes)受到外來感染原刺激時會分化成吞噬細胞(macrophages),同時分泌許多細胞激素(cytokines)以引發適當的免疫反應來清除感染原。對於外來感染原的免疫反應過度時反而會引起敗血病(sepsis),造成多種器官衰竭和死亡。在美國平均每年約有近百萬人罹患敗血病,每年在敗血疾病的醫藥花費更高達數億美元,所以研發出更有效治療敗血病的方法是具有其急迫性的。先前我們在吞噬細胞的研究結果發現以脂多醣(lipopolysaccharides; LPS)刺激吞噬細胞可以使其分泌出大量的可溶性血管內皮生長因子受器(sFlt-1);在敗血病動物模式研究結果發現,注射sFlt-1可以降低LPS 所造成老鼠敗血病的死亡率,然而目前關於LPS誘導吞噬細胞分泌sFlt-1的分子機制尚不清楚。本論文研究結果發現廣效性的PKC抑制劑GF109203X可以抑制LPS誘導老鼠吞噬細胞RAW264.7或是人類周邊血液的吞噬細胞分泌sFlt-1,但促進了LPS所誘導VEGF的分泌。此外將細胞以專一性PKCδ抑制劑Rottlerin處理,或在細胞內表現無酵素活性的PKCδ (K376R)突變蛋白也可以得到相同的結果,顯示PKCδ在LPS誘導sFlt-1和VEGF分泌的分子機制中,分別扮演了正面與負面調控的角色。
Statin是 HMG-CoA reductase的抑制劑,臨床上主要用來抑制中間產物mevalonate的生成,進而中斷膽固醇之合成。除了在降低血脂的功能外,目前有許多研究報告發現statin也具有抗發炎的效果;在臨床統計上發現平時有服用statin的人發生敗血病的機率較無服用者較低,可是目前關於statin抗發炎功能的分子作用機制尚未完全了解。在本論文研究結果發現先以低劑量simvastatin (1 μM) 刺激RAW264.7細胞可以提高LPS所誘導sFlt-1的表現,若多加入mevalonate或其下游中間產物geranylgeranyl pyrophosphate (GGPP)則可抑制simvastatin的作用,顯示mevalonate 代謝路徑也參與了LPS誘導sFlt-1表現機制之調控。先前研究發現simvastatin可以活化吞噬細胞內ERK訊息傳遞路徑,在本論文研究中我們發現經過simvastatin的前處理可以延長LPS所誘導ERK1/2磷酸化的時間,如果對吞噬細胞先施予ERK1/2抑制劑U0126前處理,則可以抑制simvastatin對sFlt-1的影響。綜合以上的結果,本論文實驗結果證實了PKCδ訊息傳遞路徑的活化和mevalonate 代謝路徑在LPS誘導吞噬細胞分泌sFlt-1的調控機制中皆扮演了很重要的角色。 | zh_TW |
dc.description.abstract | Upon pathogen infection, the activated monocytes or macrophages secret a variety of cytokines to orchestrate a complicated immune response in the host. However, overwhelming systemic inflammation may result in septic diseases which cause organ dysfunction and eventually lead to death. Nearly one million cases of severe sepsis are diagnosed and cost approximately ten billion US dollars each year in the United States. Development of effective therapies for septic diseases is a high priority task. Our previous studies found that LPS treatment could induce sFlt-1 secretion in macrophage and exogenous sFlt-1 treatment could decrease the mortality in LPS-induced septic mouse model. However, the molecular mechanism of LPS-induced sFlt-1 expression is still not understood. In this thesis, we found that in the murine RAW264.7 cells, as well as in primary human monocytes/macrophages, pretreatment with a general PKC inhibitor GF109203X or with a novel PKCδ inhibitor rottlerin or overexpression of a kinase-inactive form of PKCδ (K376R) eliminated LPS-induced sFlt-1 expression and augmented LPS-induced VEGF expression at both the protein and the transcription levels. These data suggest that PKCδ signaling is involved in LPS-induced sFlt-1expression and serves as a negative mediator in LPS-induced VEGF expression in macrophages.
Statin, an inhibitor of HMG-CoA reductase, exert pleiotropic effects independent of cholesterol reduction. It is noted that the mortality and morbidity of sepsis patients treated with statin are reduced. However, the molecular mechanism of anti-inflammatory effect for this drug is not fully understood. In this thesis, we demonstrated that simvastatin enhanced both LPS-induced sFlt-1 mRNA and protein expressions in murine RAW 264.7 macrophages. Co-treatment with mevalonate or its metabolites geranylgeranyl pyrophosphate (GGPP), but not farnesyl pyrophosphate (FPP), blocked the effect of simvastatin. These data suggested that protein geranylgeranylation may play a crucial role in the regulation of sFlt-1 in response to LPS. We also found that simvastatin pretreatment prolonged ERK1/2 phosphorylation in response to LPS stimulation. Furthermore, blockage of ERK signaling by U0126 inhibited sFlt-1 secretion in response co-treatment of LPS and simvastatin. Our results indicate that both PKCδ activation and mevalonate pathway play important roles in LPS-induced sFlt-1 expression in murine RAW 264.7 macrophages. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:33:59Z (GMT). No. of bitstreams: 1 ntu-97-D88448005-1.pdf: 1755669 bytes, checksum: c1782e4d116b35bb1fa80f8328ccf123 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………..……………….... .i
誌謝…………………………………………………………………….…………..... ii 中文摘要……………………….…………………………………………………......iii Abstract..……………………………………………………………...…………........v 目錄..............................................................................................................................vii Abbreviations..............................................................................................................xii Part 1 Mechanism of LPS-induced sFlt-1 Expression in Macrophage...........…………....1 Literature Review 1. Sepsis and Monocyte/Macrophage…….…..…..……………………….........2 2. VEGF, PlGF, and their Receptors………...........…………………………....4 3. VEGF expression in Monocyte/ Macrophage…….…………..………….....6 4. LPS-activated signal transduction pathways……….....…………………....7 5. Statin in sepsis……………………………………….………………………..9 Chapter 1 Novel PKC signaling is required for LPS-induced soluble Flt-1 expression in macrophages …………………………………………........……………………..11 Abstract…………………………………………….....………………………. 11 Introduction…………………………………….......………………………….13 Materials and Methods…………………..…………………………………....16 Results………………………………………………………………………….20 LPS-induced phosphorylation of multiple PKC isoforms in murine macrophage RAW264.7 cells…………...…………………………………..20 Activation of the PKC signal pathway is required for LPS-induced sFlt-1 secretion in RAW264.7 cells……………………………....………………...20 Inhibition of the general PKC pathway increases the level of free-form VEGF in culture medium of the LPS-activated RAW264.7 cell……..…..21 Inhibition of the novel-type but not the conventional or atypical PKC isoforms regulates LPS-induced sFlt-1 and VEGF expressions in RAW264.7 cells…………………………………………......……………….22 Overexpression of dominant-negative mutant K376R of PKC δ suppresses LPS-induced sFlt-1 secretion in RAW 264.7 cells………....…….………. 23 General PKC inhibitor GF109203X also regulates LPS-induced sFlt-1 and VEGF expression in human primary macrophages……...…………....….24 Discussion…………………………………………………………………...….25 Chapter 2 Simvastatin enhances LPS-induced soluble Flt-1 expression in murine macrophages via prolonging ERK activation………........…….........……...…..30 Abstract…………………………………………………...……………………30 Introduction………………………………………..………………..…………32 Materials and Methods…………………………….………………………….35 Results……………………………………………….......……………………..39 Simvastatin augments LPS-induced sFlt-1 expression in RAW 264.7 macrophages…………………………………………..…………………….39 Mevalonate and its metabolite GGPP restore the normal response to LPS in simvastatin-pretreated RAW 264.7 macrophages.…........…….………39 Simvastatin prolongs LPS-induced ERK phosphorylation in RAW 264.7 macrophages………………………………………………..…………...…..41 Blockage of ERK signaling inhibits sFlt-1 secretion in response to LPS alone or to co-treatment of LPS and simvastatin in RAW 264.7 macrophages…..….........................................................................................41 Simvastatin does not affect the LPS-induced VEGF mRNA expressions in RAW264.7 macrophages……………….……………………………….…..42 Discussion………………………………………………………………..…......44 Part 2 Effects of EBP2 Expression on Cell Growth and Chromosome Stability….........49 中文摘要..................................................................................................................50 Abstract………………..………. .……………………………………….……….51 Literature Review………………………………………………………………...52 1. p40/ EBP2/ NoBP………………………………………………………........52 2. Cyclin E and cancer…..…......….……..........................................................54 3. Chromosome instability………………………………………………….....56 4. Role of EBP2 in tumorigenesis…...…………………………………….......57 Chapter 3 Ectopic EBP2 expression enhances cyclin E1 expression and induces chromosome instability in HEK293 stable clones……......………………...…..59 Abstract …………………………………………………...…………….……..59 Introduction………………………………………………......………………..60 Materials and Methods………………………………………………………..62 Results…………………………………………………………......…………...66 Generation of EBP2-EGFP stable clones in HEK293 cells…......………..66 Ectopic EBP2-EGFP expression increases cyclin E expression…....….…66 EBP2-EGFP-induced cyclin E expression does not increase Cdk2 activity …………………………………………………………………........67 EBP2-EGFP induces ATM-p53-p21 pathway……………………..…........68 EBP2-EGFP expression induces chromosome instability………………...69 Discussion……………………………………………………………….……...71 Table 1: Chromosome number of HEK293 with or without ectopic EBP2-EGFP expression…………………………………...…..........74 Figures: Fig. 1: Phosphorylation of multiple PKC isoforms induced by LPS in murine macrophage RAW264.7 cells………………………...……75 Fig. 2: GF109203X suppressed sFlt-1 expression in LPS-activated RAW264.7 cells………………………………………………...……76 Fig. 3: GF109203X increased VEGF expression in LPS-activated RAW264.7 cells……………………………………………………...77 Fig. 4: Effects of different PKC isoform inhibitors on LPS-induced sFlt-1 and VEGF expressions in RAW264.7 cells………….......………....78 Fig. 5: Effects of overexpressing dominant-negative mutant K376R of PKC δ on LPS-induced sFlt-1 and VEGF expressions in RAW 264.7 macrophages…………………………………………..….…..79 Fig 6. Effects of GF109203X on LPS-induced sFlt-1 and VEGF secretion in primary human macrophages….........……………………….....80 Fig 7. Simvastatin augmented LPS-induced sFlt-1 secretions in murine RAW264.7 macrophages.………………………..………………..…81 Fig 8. Mevalonate and geranylgeranylpyrophosphate (GGPP) prevented simvastatin-mediated augmentation of LPS-induced sFlt-1 expression in RAW264.7 cells…………………………………….…82 Fig 9. Simvastatin prolonged LPS-induced ERK phosphorylation in RAW264.7 cells……..........................……....………………………...83 Fig 10. ERK inhibitor U0126 inhibited LPS-induced sFlt-1 secretion in RAW264.7 cells………….....………...………………………….......84 Fig 11. Simvastatin did not affect LPS-induced VEGF mRNA expression in RAW264.7 cells…………...……………………………………....85 Fig 12: Localization of EBP2-EGFP in HEK293 cells. …………………..86 Fig 13: Increased cyclin E1 expression in EBP2-EGFP stable clones..….87 Fig 14: Effects of ectopic EBP2-EGFP expression on cyclins D1, E1, A and B expression using flow cytometry. …………………………….. 88 Fig 15: Ectopic EBP2-EGFP expression did not alter cell cycle progression........................................................................... …..…..89 Fig 16. Excess cyclin E1 expression did not influence Cdk2 kinase activity via initiating ATM-p53-p21 system in HEK 293 stable clones. .....90 References….......…………………………………………………………...... .91 | |
dc.language.iso | en | |
dc.title | 內毒素LPS誘導吞噬細胞分泌sFlt-1機制之探討 | zh_TW |
dc.title | Mechanism of LPS-induced sFlt-1 Expression in Macrophage | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蔡芷季,李芳仁,謝豐舟,陳瑞華 | |
dc.subject.keyword | 敗血病,可溶性血管內皮生長因子受器,血管內皮生長因子,蛋白質磷酸化酵素C,降膽固醇藥物, | zh_TW |
dc.subject.keyword | sepsis,soluble Flt-1,VEGF,Protein kinase C,Statin, | en |
dc.relation.page | 102 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。