請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3758完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳保中(Pau-Chung Chen) | |
| dc.contributor.author | Yen-Ping Kung | en |
| dc.contributor.author | 龔晏平 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:36:30Z | - |
| dc.date.available | 2016-08-26 | |
| dc.date.available | 2021-05-13T08:36:30Z | - |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-12 | |
| dc.identifier.citation | Abbott BD, Wolf CJ, Schmid JE, Das KP, Zehr RD, Helfant L, Nakayama S, Lindstrom AB, Strynar MJ, Lau C. Perfluorooctanoic acid induced developmental toxicity in the mouse is dependent on expression of peroxisome proliferator activated receptor-alpha. Toxicol. Sci. 2007;98:571-581.
Bolt RJ, van Weissenbruch MM, Lafeber HN, Delemarre-van de Waal HA. Glucocorticoids and lung development in the fetus and preterm infant. Pediatr Pulmonol. 2001 Jul;32(1):76-91. Chawes BL. Upper and lower airway pathology in young children with allergic- and non-allergic rhinitis. Dan Med Bull. 2011 May;58(5):B4278. Review. Chen MH, Ha EH, Wen TW, Su YN, Lien GW, Chen CY, et al. 2012. Perfluorinated compounds in umbilical cord blood and adverse birth outcomes. PloS one 7:e42474. Chen T, Zhang L, Yue JQ, Lv ZQ, Xia W, Wan YJ, et al. 2012. Prenatal pfos exposure induces oxidative stress and apoptosis in the lung of rat off-spring. Reproductive toxicology 33:538-545. DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR. 2012. Immunotoxicity of perfluorinated compounds: Recent developments. Toxicologic pathology 40:300-311. Dong GH, Tung KY, Tsai CH, Liu MM, Wang D, Liu W, et al. 2013. Serum polyfluoroalkyl concentrations, asthma outcomes, and immunological markers in a case-control study of taiwanese children. Environmental health perspectives 121:507-513, 513e501-508. Eriksson U, Kärrman A. World-Wide Indoor Exposure to Polyfluoroalkyl Phosphate Esters (PAPs) and other PFASs in Household Dust. Environ Sci Technol. 2015 Dec 15;49(24):14503-11. Fei C, McLaughlin JK, Lipworth L, Olsen J. 2010. Prenatal exposure to pfoa and pfos and risk of hospitalization for infectious diseases in early childhood. Environmental research 110:773-777. Gibson AM, Reddington C, McBride L, Callanan C, Robertson C, Doyle LW. Pediatr Pulmonol. 2015 Oct;50(10):987-94. Gilbert WM, Danielsen B, Pregnancy outcomes associated with intrauterine growth restriction. Am J Obstet Gynecol. 2003 Jun;188(6):1596-9 Grasty RC, Bjork JA, Wallace KB, Wolf DC, Lau CS, Rogers JM. 2005. Effects of prenatal perfluorooctane sulfonate (pfos) exposure on lung maturation in the perinatal rat. Birth defects research Part B, Developmental and reproductive toxicology 74:405-416. Guerra S, Sherrill DL, Martinez FD, Barbee RA. 2002. Rhinitis as an independent risk factor for adult-onset asthma. Journal of Allergy and Clinical Immunology 109:419-425. Harada K, Koizumi A, Saito N, Inoue K, Yoshinaga T, Date C, et al. 2007. Historical and geographical aspects of the increasing perfluorooctanoate and perfluorooctane sulfonate contamination in human serum in japan. Chemosphere 66:293-301. Hsieh CJ, Hsieh WS, Su YN, Liao HF, Jeng SF, Taso FM, et al. 2011. The taiwan birth panel study: A prospective cohort study for environmentally- related child health. BMC research notes 4:291. Jaakkola, J.J., Parise, H., Kislitsin, V., Lebedeva, N.I. and Spengler, J.D. (2004) Asthma, wheezing, and allergies in Russian schoolchildren in relation to new surface materials in the home, Am. J. Public Health, 94, 560–562. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. 2007. Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicological sciences : an official journal of the Society of Toxicology 99:366-394. Lien GW, Wen TW, Hsieh WS, Wu KY, Chen CY, Chen PC. 2011. Analysis of perfluorinated chemicals in umbilical cord blood by ultra-high performance liquid chromatography/tandem mass spectrometry. Journal of chromatography B, Analytical technologies in the biomedical and life sciences 879:641-646. Maisonet M, Terrell ML, McGeehin MA, Christensen KY, Holmes A, Calafat AM, et al. 2012. Maternal concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal growth in british girls. Environmental health perspectives 120:1432-1437. Manise M HG, Van Crombruggen K, Schleich F, Bachert C, et al. 2013. Sputum ige and cytokines in asthma: Relationship with sputum cellular profile. PloS one 8:e58388. Manzano-Salgado CB, Casas M, Lopez-Espinosa MJ, Ballester F, Basterrechea M, Grimalt JO, Jiménez AM, Kraus T, Schettgen T, Sunyer J, Vrijheid M. Environ Res. 2015 Oct;142:471-8. M. J. Mendell. 2007 Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: a review. Indoor Air 2007; 17: 259–277 Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. 2005. Standardisation of spirometry. The European respiratory journal 26:319-338. Okada E, Sasaki S, Saijo Y, Washino N, Miyashita C, Kobayashi S, et al. 2012. Prenatal exposure to perfluorinated chemicals and relationship with allergies and infectious diseases in infants. Environmental research 112:118-125. Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, et al. 2007. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environmental health perspectives 115:1298-1305. Radhika Kajekar, Environmental factors and developmental outcomes in the lung. Pharmacology & Therapeutics 114 (2007) 129-145 Richard Harding, Gert Maritz, Maternal and fetal origins of lung disease in adulthood. Seminars in Fetal & Neonatal Medicine 17 (2012) 67-72 Rosalind J. Wright, Perinatal stress and early life programming of lung structure and function. Biological Psychology 84 (2010) 46-56 Ryu MH, Jha A, Ojo OO, Mahood TH, Basu S, Detillieux KA, Nikoobakht N, Wong CS, Loewen M, Becker AB, Halayko AJ, Chronic exposure to perfluorinated compounds: Impact on airway hyperresponsiveness and inflammation. Am J Physiol Lung Cell Mol Physiol. 2014 Nov 15;307(10):L765-74. Suzuki S, Tsubochi H, Darnel A, Suzuki T, Sasano H, Krozowski ZS, Kondo T, Expression of 11 beta-hydroxysteroid dehydrogenase type 1 in alveolar epithelial cells in rats, Endocr. J. 50 (4) (2003) 445–451. Tore´ n K, Olin AC, Hellgren J, Hermansson BA. Rhinitis increase the risk for adult-onset asthma: a Swedish population-based case-control study (MAPstudy). Respir Med 2002; 96:635–641. Wang IJ, Hsieh WS, Chen CY, Fletcher T, Lien GW, Chiang HL, et al. 2011. The effect of prenatal perfluorinated chemicals exposures on pediatric atopy. Environmental research 111:785-791. Yang Q, Xie Y, Alexson SEH, Nelson BD, DePierre JW. 2002. Involvement of the peroxisome proliferator-activated receptor alpha in the immunomodila- tion caused by peroxisome proliferators in mice. Biochem. Pharmacol. 63, 1893–1900. Ye L, Zhao B, Cai XH, Chu Y, Li C, Ge RS. 2012. The inhibitory effects of perfluoroalkyl substances on human and rat 11beta-hydroxysteroid dehydrogenase 1. Chemico-biological interactions 195:114-118. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3758 | - |
| dc.description.abstract | 背景:
全氟碳化物是環境中常見的環境中持續的有機汙染物,次分類包括有全氟辛酸(PFOA)、全氟辛烷磺酸鹽(PFOS)、全氟壬酸(PFNA)及全氟十一酸(PFUA)等。動物實驗證實全氟碳化物會影響改變肺部發展及發炎反應。然而,產前的暴露與孩童時期的暴露全氟碳化物對孩童肺部影響程度大小目前尚不清晰。 研究目的: 本篇研究目的在於探討產前暴露和孩童時期暴露到不同的全氟碳化物,對於孩童肺部發展的影響。 研究方法: 從台灣出生世代追蹤調查研究中,收案165位孩童,從出生時的臍帶血測量其全氟碳化物濃度,在孩童八歲時收取血清再測量其全氟碳化物濃度,方法是以極致液相層析/串聯式質譜儀作分析。並在孩童八歲時做肺功能檢查及兒童氣喘及過敏國際研究問卷調查。 結果: 在165位收案孩童中,臍帶血中的PFOA、PFOS、PFNA和PFUA濃度分別為2.4, 6.4, 6.0, 15.4奈克每毫升。而八歲時的血清中PFOA、PFOS、PFNA和PFUA濃度則分別為2.7, 5.9, 0.6, 0.3奈克每毫升。八歲時期的肺功能平均第一秒用力呼氣量 (FEV1)、用力肺活量( FVC)、最大呼氣流率( PEF)及用力呼氣一秒率(FEV1/FVC)分別為1679毫升、1835毫升、3846毫升每秒及92.0%。本研究發現臍帶血中的PFOA、PFOS、PFNA和PFUA與肺功能的減少有關連性,對於減少肺功能的一致性最高者為臍帶血中PFOS濃度,對於次分類中的較輕出生體重孩童和過敏性鼻炎孩童的肺功能具有顯著的負向影響。 結論: 我們的世代研究發現PFOA、PFOS、PFNA和PFUA在臍帶血中濃度的幾何平均皆大於八歲孩童時期血清濃度。臍帶血中的PFOS濃度對孩童時期的第一秒用力呼氣量 (FEV1)、用力肺活量( FVC)、最大呼氣流率( PEF)有負向影響的趨勢,其中較輕出生體重和有過敏性鼻炎的孩童會有顯著影響。產前的全氟碳化物對於孩童未來的肺部發展可能扮演了重要的角色。 | zh_TW |
| dc.description.abstract | Background:
The perfluoroalkyl substances (PFAS), such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUA), are common persistent organic pollutants in the environment. Animal studies had indicated PFAS would influence lung development and inflammatory responses. However, the effect of whether prenatal or childhood PFAS exposures affect more children’s lung function is unclear. Aim: The purpose of this study is to investigate the relationships between intra-utero exposure and childhood-exposure to PFAS and lung function development at children stage. Methods: In total, 165 children were recruited from the Taiwan Birth Panel Study (TBPS). Cord blood plasma and children’s serum while they’re eight years old was collected. PFAS were analyzed by ultra-high-performance liquid chromatography/tandem mass spectrometry. Until reached eigth years of age, we enrolled these children to have lung function examinations and detailed questionnaire. Results: Among 165 study children, the mean concentrations of PFOA, PFOS, PFNA and PFUA in cord blood were 2.4, 6.4, 6.0, 15.4 ng/mL, respectively. The concentrations in eight-year-old serum were 2.7, 5.9, 0.6, 0.3ng/mL, respectively. At eight years of age, their mean values of FEV1 (forced expiratory volume in 1 second), FVC (forced vital capacity), PEF (peak expiratory flow) and FEV1/FVC were 1679 mL, 1835 mL, 3846 mL/sec and 92.0 percent, respectively. PFOA, PFOS, PFNA and PFUA levels in cord blood were inversely associated with FEV1, FVC and PEF values. PFOS in cord blood is the most consistently correlated to decreasing lung function even after adjusting confounding factors. PFOS significantly affects lung function in subgroup of lower birth weight and allergic rhinitis. Conclusions: Our cohort study suggested that the concentrations of PFOA, PFOS, PFNA and PFUA were geometrically higher in cord blood than in eight-year-old serum. There are also trends noted between intrauterine PFOS and decreasing FEV1, FVC and PEF in children stage, especially in subgroups of lower birth weight and allergic rhinitis. Intrauterine PFAS may play an important role in children’s lung development. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:36:30Z (GMT). No. of bitstreams: 1 ntu-105-R02841029-1.pdf: 836584 bytes, checksum: 4c91417a30082f3dccafabc9c34c1bf8 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 1
National Taiwan University Thesis Verification Form 2 中文摘要 3 Abstract 5 I. Introduction 9 II. Methods 12 III. Results 17 IV. Discussion 20 V. Conclusions 26 VI. References 27 | |
| dc.language.iso | en | |
| dc.subject | 過敏疾病 | zh_TW |
| dc.subject | 產前暴露 | zh_TW |
| dc.subject | 全氟碳化物 | zh_TW |
| dc.subject | 肺功能 | zh_TW |
| dc.subject | 肺部發展 | zh_TW |
| dc.subject | allergic disease | en |
| dc.subject | prenatal exposure | en |
| dc.subject | perfluoroalkyl substances | en |
| dc.subject | lung function | en |
| dc.subject | lung development | en |
| dc.title | 產前全氟碳化物暴露可能改變八歲孩童時期肺功能 | zh_TW |
| dc.title | Intra-utero Exposure to Perfluoroalkyl Substances May Affect Lung Function Development at Eight Years of Age | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭育良(Yue-Liang Guo),李永凌(Yungling Lee),陳美惠(Mei-Huei Chen),陳啟信(Chi-Hsien Chen) | |
| dc.subject.keyword | 產前暴露,全氟碳化物,肺功能,肺部發展,過敏疾病, | zh_TW |
| dc.subject.keyword | prenatal exposure,perfluoroalkyl substances,lung function,lung development,allergic disease, | en |
| dc.relation.page | 40 | |
| dc.identifier.doi | 10.6342/NTU201602459 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-08-12 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
| 顯示於系所單位: | 職業醫學與工業衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 816.98 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
