Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37576
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立義
dc.contributor.authorPei-Yu Lanen
dc.contributor.author藍珮瑜zh_TW
dc.date.accessioned2021-06-13T15:33:24Z-
dc.date.available2013-05-05
dc.date.copyright2008-07-17
dc.date.issued2008
dc.date.submitted2008-07-14
dc.identifier.citation[1] http://maps.grida.no/go/graphic/atmospheric-concentrations-of-carbon-dioxide
-co2-mauna-loa-or-keeling-curve
[2] http://maps.grida.no/go/graphic/trends-in-arctic-temperature-1880-2006
[3] http://maps.grida.no/go/graphic/arctic-sea-ice-minimum-extent-in-september-
1982-2005-and-2007
[4] K. M. Coakley, M. D. McGehee, Chem. Mater. 2004, 16, 4533.
[5] D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 1954, 25, 676.
[6] H. Spanggaard, F. C. Krebs, Sol. Energy Mater. Sol. Cells 2004, 83, 125.
[7] J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys.
Lett. 1996, 68, 3120.
[8] L. A. A. Pettersson, L. S. Roman, O. J. Inganas, Appl. Phys. 1999, 86, 487.
[9] M. Theander, A. Yartsev, D. Zigmantas, V. Sundstrom, W. Mammo, M. R.
Anderson, O. Inganas, Phys. Rev. B 2000, 61, 12957.
[10] T. J. Savenije, J. M. Warman, A. Goossens, Chem. Phys. Lett.1998, 287, 148.
[11] A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldman, U.
Scherf, E. Harth, A. Gugel, K. Mullen, Phys. Rev. B 1999, 59, 15346.
[12] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F.
Wudl, Appl. Phys. Lett. 1993, 62, 585.
[13] T. J. Savenije, J. M. Warman, A. Goossens, Chem. Phys. Lett. 1998, 287, 148.
[14] J. Nelson, Materials Today 2002, 5, 20.
[15] B. P. Rand, J. Genoe, P. Heremans, J. Poortmans, Prog. Photovolt: Res. Appl.
2007, 15, 659.
[16] G. Yua, A. J. Heeger, J. Appl. Phys. 1995, 78, 4510.
[17] G. Yu, J. Gao, J. C. Hummelen, F. Wudi, A. J. Heeger, Science 1995, 270, 1789.
[18] F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater. 2003, 13, 85.
[19] W. Ma, C. Yan, X. Gong, K. Lee, A. J. Heeger, Adv.Funct. Mater. 2005, 15,
1617.
[20] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 2002, 295, 2425.
[21] J. Boucle, P. Ravirajanac, J. Nelson, J. Mater. Chem. 2007, 17, 3141.
[22] P. A. van Hal, M. M. Wienk, J. M. Kroon, V. J. H. Verhees, L. H. Slooff, W. J.
H. van Gennip, P. Jonkheijm, R. A. J. Janssen, Adv. Mater. 2003, 15, 118.
[23] D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, D. S. Ginley, Thin Solid Films
2006, 496, 26.
[24] P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J.
R. Durrant, J. Nelson, J. Phys. Chem. B 2006, 110, 7635.
[25] J. Nelson, R. E. C. Chandler, Chem. Rev. 2004, 248, 1181.
[26] G. P. Bartholomew, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 677.
[27] P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, B.
F. Chmelka, Chem. Mater. 2002, 14, 3284.
[28] E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, C.
Sanchez, J. Am. Chem. Soc. 2003, 125, 9770.
[29] K. M. Coakley, Y. Liu, M. D. McGehee, K. L. Frindell, G. D. Stucky, Adv.
Funct. Mater. 2003, 13, 301.
[30] K. Liu, H. Fu, K. Shi, F. Xiao, L. Jing, B. Xin, J. Phys. Chem. B 2005, 109,
18719.
[31] K. M. Coakley, M. D. McGeheea, Appl. Phys. Lett. 2003, 83, 3380.
[32] C. Goh, S. R. Scully, M. D. McGehee, J. Appl. Phys. 2007, 101, 114503.
[33] G. Tourillon, F. Garnier, J. Electroanal. Chem. 1982, 135, 173.
[34] Y. Wei, C.C. Chan, J. Tian, G. W. Jang, K. F. Hsueh, Chem. Mater. 1991, 3,
888.
[35] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and
Applications, 2nd ed. Wiley Interscience Publications 2001.
[36] B. P. Rand, J. Genoe, P. Heremans, J. Poortmans, Prog. Photovolt: Res. Appl.
2007, 15, 659.
[37] H. Spanggaard, F. C. Krebs, Sol. Energy Mater. Sol. Cells 2004, 83, 125.
[38] H. Hoppea, N. S. Sariciftci, J. Mater. Res. 2004, 19, 7, 1924.
[39] E. Barsoukov, J. R. Macdonald, Impedance Spectroscopy : Theory, Experiment,
and Applications, 2nd ed. Wiley Interscience Publications 2005.
[40] G. J. Brug, A. L.G. van den Eeden, M. Sluyters-Rehbach, J. H. Sluyters, J.
Electroanal.Chem. 1984, 176, 275.
[41] J. P. Meyers, M. Doyle, R. M. Darling, J. Newmana, J. Electrochem. Soc. 2000,
147, 2930.
[42] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Adv. Funct.
Mater. 2006, 16, 2016.
[43] L. Kavan, M. Gratzel, Electrochim. Acta 1995, 40, 643.
[44] C. Sanchez, J. Livage, New J. Chem. 1990, 14, 513.
[45] Powder Diffraction File: Search Manual, Hanawalt Method Inorganic, compiled by
the JCPDS: International Centre for Diffraction Data; in cooperation with the American Ceramic Society, Swarthmore, Pennsylvania, 1991.
[46] N.-G. Park, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B 2000, 104, 8989.
[47] R. J. Waltman, A. F. Diaz, J. Bargon, J. Electrochem. Soc. 1994, 131, 1452.
[48] H. A. M. van Mullekom, J. A. J. M. Vekemans, E. E. Havinga, E. W. Meijer,
Materials Science and Engineering. 2001, 32, 1.
[49] C. J. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci, Organic Photovoltaics
Concepts and Realization, Springer Publications 2003.
[50] W. Huang, J. Peng, L. Wang, J. Wang, Y. Cao, Appl. Phys. Lett. 2008, 92, 013308.
[51] F. Mansfeld, J. Appl. Electrochem. 1995, 25, 187.
[52] A. Amirudin, D. Thierry, Progress in Organic Coatings. 1995, 26, 1.
[53] C. Y. Huanga, Y. C. Hsua, J. G. Chena, V. Suryanarayanana, K. M. Leeb, K. C.
Hoa, Sol. Energy Mater. Sol. Cells 2006, 90, 2391.
[54] R. Helmy, A. Y. Fadeev, Langmuir 2002, 18, 23, 8924.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37576-
dc.description.abstract本研究中利用電化學聚合法製備一系列以聚(2,2-雙噻吩)/二氧化鈦為光敏感層之混成太陽能電池,其中無機二氧化鈦部份利用溶膠-凝膠法合成出粒徑大小均一之TiO2膠體溶液,經旋轉塗佈後製備出具奈米孔隙之TiO2薄膜,並作為本研究中元件系統之acceptor;再利用電化學聚合的方法,在固定之電流密度下將吸光層材料poly(2,2-bithiophene)成長於基材上,並作為本研究中元件系統之donor。實驗中我們藉由改變TiO2膠體溶液之濃度來調控TiO2薄膜之厚度,且成功地以電化學聚合法將主鏈剛硬無柔軟側鏈之poly(2,2-bithiophene)成長於其上,除了製程方便快速之外,電化學聚合法提供了可準確控制polymer沉積量之優點,因此我們得以固定TiO2厚度以外之實驗參數,對系統進行一致性的探討,研究中藉由各項儀器(UV-Vis-NIR Spectrometer、Photoluminescene Spectroscopy、Electrochmical Impedance Spectroscopy)搭配元件結果,探討TiO2厚度不同時對於系統各項性質之影響,實驗結果顯示,當acceptor厚度為165 nm時,元件之各項表現均最佳,在AM 1.5G 100 mW/cm2照光情況下元件之open-circuit voltage (Voc)、short-circuit current (Jsc)、fill factor (FF)及power conversion efficiency (η)分別為:420 mV、0.171 mA/cm2、0.48及3.44E-2 %;PL之quench效率為64.5 %,表示exciton的分離效率因為TiO2的加入而得到了提升。此外,本研究亦藉由導入2-thiophenecarboxylic acid將親水之TiO2表面改質為疏水性,以增加有機/無機介面處之親和性,實驗結果顯示,改質後元件之Voc、Jsc、FF及η分別為:470 mV、0.090 mA/cm2、0.48及2.02E-2 %,僅管改質後之結果並不如預期,但是由Voc的上升可知surface modifier對元件表現確有影響。zh_TW
dc.description.abstractA series of novel organic/inorganic hybrids solar cells were fabricated and investigated. Various thicknesses of TiO2 films were coated on top of FTO glass by spin-casting using different concentrations of TiO2 colloids that synthesized by sol-gel method. This study developed an electrochemical polymerization route for preparing organic/inorganic hybrids for use as photoactive materials in photovoltaic devices. This new technique was benefited from the ability of using non-soluble conjugated polymers as major photoactive component in solar cells. Moreover, the monomer can be polymerized from the interstices of TiO2 matrices due to their much smaller size in comparison to the corresponding polymer, thus substantially increasing the donor-acceptor interface for exciton dissociation. The effect of titania film thickness on the performance of the photovoltaic cells constructed from these materials was examined. An approximate thickness of 165 nm of TiO2 exhibited an optimal cell performance with a short-circuit current, an open-circuit voltage, a fill factor and a power conversion efficiency of 0.171 mA/cm2, 0.42 V, 0.48 and 3.44E-2 %, respectively. Additionally, 2-thiophenecarboxylic acid was employed as a surface modifier to alter the TiO2 surface from hydrophilic to hydrophobic. The devices with 2-thiophenecarboxylic acid had an optimal short-circuit current, open-circuit voltage, fill factor and power conversion efficiency of 0.09 mA/cm2, 0.47 V, 0.48 and 2.02E-2 %, respectively. Although the cell performance was not improved, the Voc was slightly increased, revealing that surface modifier certainly ameliorated the interface properties of organic/inorganic.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:33:24Z (GMT). No. of bitstreams: 1
ntu-97-R95549009-1.pdf: 5158891 bytes, checksum: 5622f76e23e219d1509a15e4148bff87 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents致謝 I
中文摘要 III
Abstract IV
目錄 V
圖目錄 VII
表目錄 XIII
第1章 緒論 1
1-1 前言 1
1-2 研究目的 2
第2章 文獻回顧 3
2-1 太陽能電池的發展 3
2-1-1無機太陽能電池 3
2-1-2單層及雙層結構之有機太陽能電池 4
2-1-3異質接面結構之有機太陽能電池 6
2-2 導電高分子/無機半導體混成太陽能電池 12
2-2-1導電高分子/無機半導體混成太陽能電池之發展 12
2-2-2 挑戰及改善 14
2-2-3 電化學聚合法 18
2-3 太陽能電池的簡介 19
2-3-1 工作原理 19
2-3-2 效能評估 20
2-3-3 電化學阻抗分析(EIS) 22
第3章 實驗 28
3-1 實驗材料 28
3-2 實驗儀器 30
3-3 實驗步驟 31
3-3-1基材的前處理 31
3-3-2 TiO2的製備 32
3-3-3表面改質劑之自組裝單層膜的製備 34
3-3-4以電化學聚合法製備poly(2,2-bithiophene) 35
3-3-5 太陽能電池元件的製備及量測 36
第4章 結果與討論 37
4-1 PBT/TiO2混成太陽能電池之製備及分析 37
4-1-1 緻密二氧化鈦薄膜(Compact TiO2)之製備及分析 37
4-1-2 Nanoporous TiO2之製備及分析 42
4-1-3以電化學聚合法製備PBT之探討 48
4-1-4 太陽能電池元件之製備及探討 57
4-2 Surface modifier的導入及探討 65
4-2-1以surface modifier改質前後之性質探討 65
4-2-2在改質後之基材上以電化學聚合法製備PBT之探討 68
4-2-3以surface modifier改質前後之太陽能電池元件探討 71
第5章 結論 76
參考文獻 78
dc.language.isozh-TW
dc.subject表面改質劑zh_TW
dc.subject電化學聚合法zh_TW
dc.subject太陽能電池zh_TW
dc.subjectpoly(2zh_TW
dc.subject2-bithiophene)zh_TW
dc.subject二氧化鈦zh_TW
dc.subject2-bithiophene)en
dc.subjectsurface modifieren
dc.subjecttitaniaen
dc.subjectelectrochemical polymerizationen
dc.subjectsolar cellsen
dc.subjectpoly(2en
dc.title以電化學聚合法製備聚(2,2-雙噻吩)/二氧化鈦
混成太陽能電池
zh_TW
dc.titlePoly(2,2-bithiophene)/titania Hybrid Solar Cells Prepared by Electrochemical Polymerizationen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖文彬,林金福,廖建勛
dc.subject.keyword電化學聚合法,太陽能電池,poly(2,2-bithiophene),二氧化鈦,表面改質劑,zh_TW
dc.subject.keywordelectrochemical polymerization,solar cells,poly(2,2-bithiophene),titania,surface modifier,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2008-07-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
5.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved