請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37571完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志宏,曾文毅 | |
| dc.contributor.author | Li-Wei Kuo | en |
| dc.contributor.author | 郭立威 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:33:13Z | - |
| dc.date.available | 2009-07-18 | |
| dc.date.copyright | 2008-07-18 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-13 | |
| dc.identifier.citation | [1] P. Hagmann, M. Kurant, X. Gigandet, P. Thiran, V. J. Wedeen, R. Meuli, and J. P. Thiran, 'Mapping human whole-brain structural networks with diffusion MRI,' PLoS ONE, vol. 2, p. e597, 2007.
[2] R. Turner and T. Jones, 'Techniques for imaging neuroscience,' Br Med Bull, vol. 65, pp. 3-20, 2003. [3] S. Mori and J. Zhang, 'Principles of diffusion tensor imaging and its applications to basic neuroscience research,' Neuron, vol. 51, pp. 527-39, Sep 7 2006. [4] N. Harel, K. Ugurbil, K. Uludag, and E. Yacoub, 'Frontiers of brain mapping using MRI,' J Magn Reson Imaging, vol. 23, pp. 945-57, Jun 2006. [5] M. Guye, G. J. Parker, M. Symms, P. Boulby, C. A. Wheeler-Kingshott, A. Salek-Haddadi, G. J. Barker, and J. S. Duncan, 'Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo,' Neuroimage, vol. 19, pp. 1349-60, Aug 2003. [6] R. Rouw and H. S. Scholte, 'Increased structural connectivity in grapheme-color synesthesia,' Nat Neurosci, vol. 10, pp. 792-7, Jun 2007. [7] T. E. Behrens, H. Johansen-Berg, M. W. Woolrich, S. M. Smith, C. A. Wheeler-Kingshott, P. A. Boulby, G. J. Barker, E. L. Sillery, K. Sheehan, O. Ciccarelli, A. J. Thompson, J. M. Brady, and P. M. Matthews, 'Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging,' Nat Neurosci, vol. 6, pp. 750-7, Jul 2003. [8] D. Le Bihan, 'Looking into the functional architecture of the brain with diffusion MRI,' Nat Rev Neurosci, vol. 4, pp. 469-80, Jun 2003. [9] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, 'In vivo fiber tractography using DT-MRI data,' Magn Reson Med, vol. 44, pp. 625-32, Oct 2000. [10] D. K. Jones, A. Simmons, S. C. Williams, and M. A. Horsfield, 'Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI,' Magn Reson Med, vol. 42, pp. 37-41, Jul 1999. [11] S. Mori, B. J. Crain, V. P. Chacko, and P. C. van Zijl, 'Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging,' Ann Neurol, vol. 45, pp. 265-9, Feb 1999. [12] T. E. Conturo, N. F. Lori, T. S. Cull, E. Akbudak, A. Z. Snyder, J. S. Shimony, R. C. McKinstry, H. Burton, and M. E. Raichle, 'Tracking neuronal fiber pathways in the living human brain,' Proc Natl Acad Sci U S A, vol. 96, pp. 10422-7, Aug 31 1999. [13] L. Bassi, D. Ricci, A. Volzone, J. M. Allsop, L. Srinivasan, A. Pai, C. Ribes, L. A. Ramenghi, E. Mercuri, F. Mosca, A. D. Edwards, F. M. Cowan, M. A. Rutherford, and S. J. Counsell, 'Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age,' Brain, vol. 131, pp. 573-82, Feb 2008. [14] T. E. Behrens, H. J. Berg, S. Jbabdi, M. F. Rushworth, and M. W. Woolrich, 'Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?,' Neuroimage, vol. 34, pp. 144-55, Jan 1 2007. [15] O. Ciccarelli, T. E. Behrens, D. R. Altmann, R. W. Orrell, R. S. Howard, H. Johansen-Berg, D. H. Miller, P. M. Matthews, and A. J. Thompson, 'Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis,' Brain, vol. 129, pp. 1859-71, Jul 2006. [16] P. L. Croxson, H. Johansen-Berg, T. E. Behrens, M. D. Robson, M. A. Pinsk, C. G. Gross, W. Richter, M. C. Richter, S. Kastner, and M. F. Rushworth, 'Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography,' J Neurosci, vol. 25, pp. 8854-66, Sep 28 2005. [17] S. E. Leh, A. Ptito, M. M. Chakravarty, and A. P. Strafella, 'Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study,' Neurosci Lett, vol. 419, pp. 113-8, May 29 2007. [18] G. J. Parker, H. A. Haroon, and C. A. Wheeler-Kingshott, 'A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements,' J Magn Reson Imaging, vol. 18, pp. 242-54, Aug 2003. [19] V. J. Wedeen, P. Hagmann, W. Y. Tseng, T. G. Reese, and R. M. Weisskoff, 'Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging,' Magn Reson Med, vol. 54, pp. 1377-86, Dec 2005. [20] D. S. Tuch, 'Q-ball imaging,' Magn Reson Med, vol. 52, pp. 1358-72, Dec 2004. [21] D. S. Tuch, T. G. Reese, M. R. Wiegell, N. Makris, J. W. Belliveau, and V. J. Wedeen, 'High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity,' Magn Reson Med, vol. 48, pp. 577-82, Oct 2002. [22] D. S. Tuch, T. G. Reese, M. R. Wiegell, and V. J. Wedeen, 'Diffusion MRI of complex neural architecture,' Neuron, vol. 40, pp. 885-95, Dec 4 2003. [23] C. Nicholson and J. M. Phillips, 'Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum,' J Physiol, vol. 321, pp. 225-57, Dec 1981. [24] D. Le Bihan, 'Molecular diffusion, tissue microdynamics and microstructure,' NMR Biomed, vol. 8, pp. 375-86, Nov-Dec 1995. [25] E. L. Hahn, 'Spin Echoes,' Physical Review, vol. 80, pp. 580-594, 1950. [26] H. C. Torrey, 'Bloch equations with diffusion terms,' Journal of Chemical Physics, vol. 104, pp. 563-565, 1956. [27] E. O. Stejskal and J. E. Tanner, 'Spin diffusion measurement: spin echoes in the presence of a time-dependent field gradient,' Journal of Chemical Physics, vol. 42, pp. 288-292, 1965. [28] M. E. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovitch, H. S. Asgari, M. F. Wendland, J. Tsuruda, and D. Norman, 'Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system,' Radiology, vol. 176, pp. 439-45, Aug 1990. [29] P. Douek, R. Turner, J. Pekar, N. Patronas, and D. Le Bihan, 'MR color mapping of myelin fiber orientation,' J Comput Assist Tomogr, vol. 15, pp. 923-9, Nov-Dec 1991. [30] P. J. Basser, J. Mattiello, and D. LeBihan, 'Estimation of the effective self-diffusion tensor from the NMR spin echo,' J Magn Reson B, vol. 103, pp. 247-54, Mar 1994. [31] P. J. Basser, J. Mattiello, and D. LeBihan, 'MR diffusion tensor spectroscopy and imaging,' Biophys J, vol. 66, pp. 259-67, Jan 1994. [32] C. P. Lin, W. Y. Tseng, H. C. Cheng, and J. H. Chen, 'Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts,' Neuroimage, vol. 14, pp. 1035-47, Nov 2001. [33] W. Y. Tseng, V. J. Wedeen, T. G. Reese, R. N. Smith, and E. F. Halpern, 'Diffusion tensor MRI of myocardial fibers and sheets: correspondence with visible cut-face texture,' J Magn Reson Imaging, vol. 17, pp. 31-42, Jan 2003. [34] M. R. Wiegell, H. B. Larsson, and V. J. Wedeen, 'Fiber crossing in human brain depicted with diffusion tensor MR imaging,' Radiology, vol. 217, pp. 897-903, Dec 2000. [35] P. T. Callaghan, Principles of nuclear magnetic resonance microscopy: Oxford: Clarendon Press, 1991. [36] D. S. Tuch, J. J. Wisco, M. H. Khachaturian, L. B. Ekstrom, R. Kotter, and W. Vanduffel, 'Q-ball imaging of macaque white matter architecture,' Philos Trans R Soc Lond B Biol Sci, vol. 360, pp. 869-79, May 29 2005. [37] B. Chen and E. W. Hsu, 'Noise removal in magnetic resonance diffusion tensor imaging,' Magn Reson Med, vol. 54, pp. 393-401, Aug 2005. [38] D. K. Jones and P. J. Basser, ''Squashing peanuts and smashing pumpkins': how noise distorts diffusion-weighted MR data,' Magn Reson Med, vol. 52, pp. 979-93, Nov 2004. [39] B. S. Chang and D. H. Lowenstein, 'Epilepsy,' N Engl J Med, vol. 349, pp. 1257-66, Sep 25 2003. [40] C. O. Duc, A. H. Trabesinger, O. M. Weber, D. Meier, M. Walder, H. G. Wieser, and P. Boesiger, 'Quantitative 1H MRS in the evaluation of mesial temporal lobe epilepsy in vivo,' Magn Reson Imaging, vol. 16, pp. 969-79, Oct 1998. [41] M. Kurian, L. Spinelli, J. Delavelle, J. P. Willi, M. Velazquez, V. Chaves, W. Habre, K. Meagher-Villemure, E. Roulet, J. G. Villeneuve, and M. Seeck, 'Multimodality imaging for focus localization in pediatric pharmacoresistant epilepsy,' Epileptic Disord, vol. 9, pp. 20-31, Mar 2007. [42] H. E. Scharfman, J. H. Goodman, and A. L. Sollas, 'Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis,' J Neurosci, vol. 20, pp. 6144-58, Aug 15 2000. [43] J. V. Nadler, 'The recurrent mossy fiber pathway of the epileptic brain,' Neurochem Res, vol. 28, pp. 1649-58, Nov 2003. [44] T. Sutula, 'Seizure-Induced Axonal Sprouting: Assessing Connections Between Injury, Local Circuits, and Epileptogenesis,' Epilepsy Curr, vol. 2, pp. 86-91, May 2002. [45] H. E. Scharfman, 'The CA3 'backprojection' to the dentate gyrus,' Prog Brain Res, vol. 163, pp. 627-37, 2007. [46] G. Danscher, 'Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy,' Histochemistry, vol. 71, pp. 1-16, 1981. [47] B. J. Claiborne, M. A. Rea, and D. M. Terrian, 'Detection of zinc in isolated nerve terminals using a modified Timm's sulfide-silver method,' J Neurosci Methods, vol. 30, pp. 17-22, Oct 1989. [48] J. E. Franck, J. Pokorny, D. D. Kunkel, and P. A. Schwartzkroin, 'Physiologic and morphologic characteristics of granule cell circuitry in human epileptic hippocampus,' Epilepsia, vol. 36, pp. 543-58, Jun 1995. [49] T. Sutula, G. Cascino, J. Cavazos, I. Parada, and L. Ramirez, 'Mossy fiber synaptic reorganization in the epileptic human temporal lobe,' Ann Neurol, vol. 26, pp. 321-30, Sep 1989. [50] J. L. Stringer, J. M. Williamson, and E. W. Lothman, 'Induction of paroxysmal discharges in the dentate gyrus: frequency dependence and relationship to afterdischarge production,' J Neurophysiol, vol. 62, pp. 126-35, Jul 1989. [51] Z. Liu, Y. Yang, D. C. Silveira, M. R. Sarkisian, P. Tandon, L. T. Huang, C. E. Stafstrom, and G. L. Holmes, 'Consequences of recurrent seizures during early brain development,' Neuroscience, vol. 92, pp. 1443-54, 1999. [52] T. Kimiwada, C. Juhasz, M. Makki, O. Muzik, D. C. Chugani, E. Asano, and H. T. Chugani, 'Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy,' Epilepsia, vol. 47, pp. 167-75, Jan 2006. [53] T. M. Salmenpera, R. J. Simister, P. Bartlett, M. R. Symms, P. A. Boulby, S. L. Free, G. J. Barker, and J. S. Duncan, 'High-resolution diffusion tensor imaging of the hippocampus in temporal lobe epilepsy,' Epilepsy Res, vol. 71, pp. 102-6, Oct 2006. [54] P. F. Fabene, P. Marzola, A. Sbarbati, and M. Bentivoglio, 'Magnetic resonance imaging of changes elicited by status epilepticus in the rat brain: diffusion-weighted and T2-weighted images, regional blood volume maps, and direct correlation with tissue and cell damage,' Neuroimage, vol. 18, pp. 375-89, Feb 2003. [55] F. J. Rugg-Gunn, S. H. Eriksson, M. R. Symms, G. J. Barker, and J. S. Duncan, 'Diffusion tensor imaging of cryptogenic and acquired partial epilepsies,' Brain, vol. 124, pp. 627-36, Mar 2001. [56] P. van Eijsden, R. G. Notenboom, O. Wu, P. N. de Graan, O. van Nieuwenhuizen, K. Nicolay, and K. P. Braun, 'In vivo 1H magnetic resonance spectroscopy, T2-weighted and diffusion-weighted MRI during lithium-pilocarpine-induced status epilepticus in the rat,' Brain Res, vol. 1030, pp. 11-8, Dec 24 2004. [57] L. Thivard, S. Lehericy, A. Krainik, C. Adam, D. Dormont, J. Chiras, M. Baulac, and S. Dupont, 'Diffusion tensor imaging in medial temporal lobe epilepsy with hippocampal sclerosis,' Neuroimage, vol. 28, pp. 682-90, Nov 15 2005. [58] A. Obenaus and R. E. Jacobs, 'Magnetic resonance imaging of functional anatomy: use for small animal epilepsy models,' Epilepsia, vol. 48 Suppl 4, pp. 11-7, 2007. [59] J. Nairismagi, A. Pitkanen, S. Narkilahti, J. Huttunen, R. A. Kauppinen, and O. H. Grohn, 'Manganese-enhanced magnetic resonance imaging of mossy fiber plasticity in vivo,' Neuroimage, vol. 30, pp. 130-5, Mar 2006. [60] R. J. Gilbert, V. J. Wedeen, L. H. Magnusson, T. Benner, R. Wang, G. Dai, V. J. Napadow, and K. K. Roche, 'Three-dimensional myoarchitecture of the bovine tongue demonstrated by diffusion spectrum magnetic resonance imaging with tractography,' Anat Rec A Discov Mol Cell Evol Biol, vol. 288, pp. 1173-82, Nov 2006. [61] L. H. M. Richard J. Gilbert, Vitaly J. Napadow, Thomas Benner, Ruopeng Wang, Van J. Wedeen, 'Mapping Complex Myoarchitecture in the Bovine Tongue with Diffusion-Spectrum Magnetic Resonance Imaging,' Biophysical Journal, vol. 91, pp. 1014-1022, 2006. [62] C. P. Lin, V. J. Wedeen, J. H. Chen, C. Yao, and W. Y. Tseng, 'Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms,' Neuroimage, vol. 19, pp. 482-95, Jul 2003. [63] W. Y. Tseng, C. P. Lin, J. H. Chen, and V. J. Wedeen, 'Diffusion spectrum imaging of complex cortical cytoarchitecture in adult rats,' In: Proceedings of the 10th Meeting of the International Society for Magnetic Resonance in Medicine, Hawaii, USA, p. 441, 2002. [64] T. M. Shepherd, E. Ozarslan, M. A. King, T. H. Mareci, and S. J. Blackband, 'Structural insights from high-resolution diffusion tensor imaging and tractography of the isolated rat hippocampus,' Neuroimage, vol. 32, pp. 1499-509, Oct 1 2006. [65] Y. Bito, S. Hirata, and E. Yamamoto, 'Optimal gradient factors for ADC measurements,' Proc. Int. Soc. Magn. Reson. Med. ISMRM, California, p. 913, 1995. [66] R. J. Racine, 'Modification of seizure activity by electrical stimulation. II. Motor seizure,' Electroencephalogr Clin Neurophysiol, vol. 32, pp. 281-94, Mar 1972. [67] L. E. Mello, E. A. Cavalheiro, A. M. Tan, W. R. Kupfer, J. K. Pretorius, T. L. Babb, and D. M. Finch, 'Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting,' Epilepsia, vol. 34, pp. 985-95, Nov-Dec 1993. [68] G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates: Academic Press, 1996. [69] M. R. Cilio, Y. Sogawa, B. H. Cha, X. Liu, L. T. Huang, and G. L. Holmes, 'Long-term effects of status epilepticus in the immature brain are specific for age and model,' Epilepsia, vol. 44, pp. 518-28, Apr 2003. [70] C. J. Wall, E. J. Kendall, and A. Obenaus, 'Rapid alterations in diffusion-weighted images with anatomic correlates in a rodent model of status epilepticus,' AJNR Am J Neuroradiol, vol. 21, pp. 1841-52, Nov-Dec 2000. [71] J. Nairismagi, O. H. Grohn, M. I. Kettunen, J. Nissinen, R. A. Kauppinen, and A. Pitkanen, 'Progression of brain damage after status epilepticus and its association with epileptogenesis: a quantitative MRI study in a rat model of temporal lobe epilepsy,' Epilepsia, vol. 45, pp. 1024-34, Sep 2004. [72] H. E. Scharfman, A. L. Sollas, K. L. Smith, M. B. Jackson, and J. H. Goodman, 'Structural and functional asymmetry in the normal and epileptic rat dentate gyrus,' J Comp Neurol, vol. 454, pp. 424-39, Dec 23 2002. [73] J. A. Kim, R. Koyama, R. X. Yamada, M. K. Yamada, N. Nishiyama, N. Matsuki, and Y. Ikegaya, 'Environmental control of the survival and differentiation of dentate granule neurons,' Cereb Cortex, vol. 14, pp. 1358-64, Dec 2004. [74] P. S. Buckmaster and F. E. Dudek, 'Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats,' J Comp Neurol, vol. 385, pp. 385-404, Sep 1 1997. [75] J. Cronin and F. E. Dudek, 'Chronic seizures and collateral sprouting of dentate mossy fibers after kainic acid treatment in rats,' Brain Res, vol. 474, pp. 181-4, Nov 22 1988. [76] A. H. Siddiqui and S. A. Joseph, 'CA3 axonal sprouting in kainate-induced chronic epilepsy,' Brain Res, vol. 1066, pp. 129-46, Dec 20 2005. [77] T. G. Reese, T. Benner, R. Wang, D. A. Feinberg, and V. J. Wedeen, 'Halving imaging time of whole brain diffusion spectrum imaging (DSI) by using simultaneous echo refocusing (SER) EPI,' In: Proceedings of the 14th Meeting of the International Society for Magnetic Resonance in Medicine, Seattle, USA, p. 1044, 2006. [78] C. P. Lin, W. Y. Tseng, J. C. Weng, V. J. Wedeen, and J. H. Chen, 'Reduced encoding of diffusion spectrum imaging with cross-term correction,' In: Proceedings of the 1st IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, pp. 561-563, 2003. [79] T. Jaermann, G. Crelier, K. P. Pruessmann, X. Golay, T. Netsch, A. M. van Muiswinkel, S. Mori, P. C. van Zijl, A. Valavanis, S. Kollias, and P. Boesiger, 'SENSE-DTI at 3 T,' Magn Reson Med, vol. 51, pp. 230-6, Feb 2004. [80] W. Y. Chiang, V. J. Wedeen, L. W. Kuo, M. H. Peng, and W. Y. Tseng, 'Diffusion spectrum imaging using Body-Center-Cubic sampling scheme,' Proc. Int. Soc. Magn. Reson. Med. ISMRM, California, p. 1041, 2006. [81] T. M. Shepherd, E. D. Wirth, 3rd, P. E. Thelwall, H. X. Chen, S. N. Roper, and S. J. Blackband, 'Water diffusion measurements in perfused human hippocampal slices undergoing tonicity changes,' Magn Reson Med, vol. 49, pp. 856-63, May 2003. [82] D. Le Bihan, C. Poupon, A. Amadon, and F. Lethimonnier, 'Artifacts and pitfalls in diffusion MRI,' J Magn Reson Imaging, vol. 24, pp. 478-88, Sep 2006. [83] T. G. Reese, O. Heid, R. M. Weisskoff, and V. J. Wedeen, 'Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo,' Magn Reson Med, vol. 49, pp. 177-82, Jan 2003. [84] N. K. Chen, K. Oshio, and L. P. Panych, 'Application of k-space energy spectrum analysis to susceptibility field mapping and distortion correction in gradient-echo EPI,' Neuroimage, vol. 31, pp. 609-22, Jun 2006. [85] K. S. Weih, W. Driesel, M. von Mengershausen, and D. G. Norris, 'Online motion correction for diffusion-weighted segmented-EPI and FLASH imaging,' Magma, vol. 16, pp. 277-83, May 2004. [86] L. R. Frank, 'Anisotropy in high angular resolution diffusion-weighted MRI,' Magn Reson Med, vol. 45, pp. 935-9, Jun 2001. [87] L. R. Frank, 'Characterization of anisotropy in high angular resolution diffusion-weighted MRI,' Magn Reson Med, vol. 47, pp. 1083-99, Jun 2002. [88] J. D. Schmahmann, D. N. Pandya, R. Wang, G. Dai, H. E. D'Arceuil, A. J. de Crespigny, and V. J. Wedeen, 'Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography,' Brain, vol. 130, pp. 630-53, Mar 2007. [89] M. H. Khachaturian, J. J. Wisco, and D. S. Tuch, 'Boosting the sampling efficiency of q-Ball imaging using multiple wavevector fusion,' Magn Reson Med, vol. 57, pp. 289-96, Feb 2007. [90] M. Kubicki, R. McCarley, C. F. Westin, H. J. Park, S. Maier, R. Kikinis, F. A. Jolesz, and M. E. Shenton, 'A review of diffusion tensor imaging studies in schizophrenia,' J Psychiatr Res, vol. 41, pp. 15-30, Jan-Feb 2007. [91] Y. Ge, M. Law, and R. I. Grossman, 'Applications of diffusion tensor MR imaging in multiple sclerosis,' Ann N Y Acad Sci, vol. 1064, pp. 202-19, Dec 2005. [92] H. Jiang, X. Golay, P. C. van Zijl, and S. Mori, 'Origin and minimization of residual motion-related artifacts in navigator-corrected segmented diffusion-weighted EPI of the human brain,' Magn Reson Med, vol. 47, pp. 818-22, Apr 2002. [93] C. Meca, S. Chabert, and D. Le Bihan, 'Diffusion MRI at large b values: what's the limit?,' In: Proceedings of the 12th Meeting of the International Society for Magnetic Resonance in Medicine, Kyoto, Japan, p. 1196, 2004. [94] L. W. Kuo, S. K. Song, V. J. Wedeen, C. P. Lin, J. H. Chen, and W. Y. Tseng, 'Mean diffusivity and anisotropy index mapping of diffusion spectrum imaging in a stroke model,' In: Proceedings of the 11th Meeting of the International Society for Magnetic Resonance in Medicine, Toronto, Canada, p. 592, 2003. [95] K. V. Mardia, Jupp, P. E., Directional Statistics, 2 ed. Chichester: J. Wiley, 2000. [96] M. Perrin, C. Poupon, B. Rieul, P. Leroux, A. Constantinesco, J. F. Mangin, and D. Lebihan, 'Validation of q-ball imaging with a diffusion fibre-crossing phantom on a clinical scanner,' Philos Trans R Soc Lond B Biol Sci, vol. 360, pp. 881-91, May 29 2005. [97] P. J. Basser, 'Relationships between diffusion tensor and q-space MRI,' Magn Reson Med, vol. 47, pp. 392-7, Feb 2002. [98] S. Skare, R. D. Newbould, D. B. Clayton, G. W. Albers, S. Nagle, and R. Bammer, 'Clinical multishot DW-EPI through parallel imaging with considerations of susceptibility, motion, and noise,' Magn Reson Med, vol. 57, pp. 881-90, May 2007. [99] M. E. Bastin, P. A. Armitage, and I. Marshall, 'A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging,' Magn Reson Imaging, vol. 16, pp. 773-85, Sep 1998. [100] H. Huang, J. Zhang, P. C. van Zijl, and S. Mori, 'Analysis of noise effects on DTI-based tractography using the brute-force and multi-ROI approach,' Magn Reson Med, vol. 52, pp. 559-65, Sep 2004. [101] Z. Ding, J. C. Gore, and A. W. Anderson, 'Reduction of noise in diffusion tensor images using anisotropic smoothing,' Magn Reson Med, vol. 53, pp. 485-90, Feb 2005. [102] D. Mayer, N. M. Zahr, E. Adalsteinsson, B. Rutt, E. V. Sullivan, and A. Pfefferbaum, 'In vivo fiber tracking in the rat brain on a clinical 3T MRI system using a high strength insert gradient coil,' Neuroimage, vol. 35, pp. 1077-85, Apr 15 2007. [103] J. Wosik, L. M. Xie, K. Nesteruk, L. Xue, J. A. Bankson, and J. D. Hazle, 'Superconducting Single and Phased-Array Probes for Clinical and Research MRI,' IEEE Trans. Appl. Supercon., vol. 13, pp. 1050-1053, 2003. [104] R. D. Black, T. A. Early, P. B. Roemer, O. M. Mueller, A. Mogro-Campero, L. G. Turner, and G. A. Johnson, 'A high-temperature superconducting receiver for nuclear magnetic resonance microscopy,' Science, vol. 259, pp. 793-5, Feb 5 1993. [105] H. L. Lee, I. T. Lin, J. H. Chen, H. E. Horng, and H. C. Yang, 'High-Tc Superconducting Receving Coils for Nuclear Magnetic Resonance Imaging,' IEEE Trans. Appl. Supercon., vol. 15, pp. 1326-1329, 2005. [106] H. C. Yang, K. L. Tsai, J. C. Chen, C. H. Wu, H. E. Horng, J. H. Chen, and L. W. Kuo, 'High-Tc superconducting surface coils for improving the image quality on a 3T imager,' Supercond. Sci. Technol., vol. 20, pp. 777-780, 2007. [107] D. I. Hoult and R. E. Richards, 'The signal-to-noise ratio of the nuclear magnetic resonance experiment,' J. Magn. Reson., vol. 24, pp. 71-85, 1976. [108] D. I. Hoult and B. Tomanek, 'Use of Mutually Inductive Coupling in Probe Design,' Concepts in Magnetic Resonance, vol. 15, pp. 262-285, 2002. [109] Y. P. Chao, J. H. Chen, K. H. Cho, C. H. Yeh, K. H. Chou, and C. P. Lin, 'A multiple streamline approach to high angular resolution diffusion tractography,' Med Eng Phys, Mar 27 2008. [110] A. I. Holodny, T. H. Schwartz, M. Ollenschleger, W. C. Liu, and M. Schulder, 'Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation,' J Neurosurg, vol. 95, p. 1082, Dec 2001. [111] T. H. Nguyen, M. Yoshida, J. L. Stievenart, M. T. Iba-Zizen, L. Bellinger, A. Abanou, K. Kitahara, and E. A. Cabanis, 'MR tractography with diffusion tensor imaging in clinical routine,' Neuroradiology, vol. 47, pp. 334-43, May 2005. [112] C. Nimsky, O. Ganslandt, P. Hastreiter, R. Wang, T. Benner, A. G. Sorensen, and R. Fahlbusch, 'Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery,' Neurosurgery, vol. 56, pp. 130-7; discussion 138, 2005. [113] T. Schonberg, P. Pianka, T. Hendler, O. Pasternak, and Y. Assaf, 'Characterization of displaced white matter by brain tumors using combined DTI and fMRI,' Neuroimage, vol. 30, pp. 1100-11, May 1 2006. [114] J. C. Ginefri, M. Poirier-Quinot, O. Girard, and L. Darrasse, 'Technical aspects: development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T,' Methods, vol. 43, pp. 54-67, Sep 2007. [115] S. E. Hurlston, W. W. Brey, S. A. Suddarth, and G. A. Johnson, 'A high-temperature superconducting Helmholtz probe for microscopy at 9.4 T,' Magn Reson Med, vol. 41, pp. 1032-8, May 1999. [116] J. R. Miller, S. E. Hurlston, Q. Y. Ma, D. W. Face, D. J. Kountz, J. R. MacFall, L. W. Hedlund, and G. A. Johnson, 'Performance of a high-temperature superconducting probe for in vivo microscopy at 2.0 T,' Magn Reson Med, vol. 41, pp. 72-9, Jan 1999. [117] T. Neuberger and A. Webb, 'Radiofrequency coils for magnetic resonance microscopy,' NMR Biomed, Feb 26 2008. [118] J. Yuan, M. L. Rohan, and G. X. Shen, 'Investigation of Bi-2223 high temperature superconducting tape as the material for gradient coil in MRI,' J Magn Reson, vol. 182, pp. 298-307, Oct 2006. [119] L. Darrasse and J. C. Ginefri, 'Perspectives with cryogenic RF probes in biomedical MRI,' Biochimie, vol. 85, pp. 915-37, Sep 2003. [120] K. H. Lee, M. C. Cheng, K. C. Chan, K. K. Wong, S. S. Yeung, K. C. Lee, Q. Y. Ma, and E. S. Yang, 'Performance of large-size superconducting coil in 0.21T MRI system,' IEEE Trans Biomed Eng, vol. 51, pp. 2024-30, Nov 2004. [121] Q. Y. Ma, K. C. Chan, D. F. Kacher, E. Gao, M. S. Chow, K. K. Wong, H. Xu, E. S. Yang, G. S. Young, J. R. Miller, and F. A. Jolesz, 'Superconducting RF coils for clinical MR imaging at low field,' Acad Radiol, vol. 10, pp. 978-87, Sep 2003. [122] Y. Saito, K. Nobuhara, G. Okugawa, K. Takase, T. Sugimoto, M. Horiuchi, C. Ueno, M. Maehara, N. Omura, H. Kurokawa, K. Ikeda, N. Tanigawa, S. Sawada, and T. Kinoshita, 'Corpus callosum in patients with obsessive-compulsive disorder: diffusion-tensor imaging study,' Radiology, vol. 246, pp. 536-42, Feb 2008. [123] D. K. Jones, M. Catani, C. Pierpaoli, S. J. Reeves, S. S. Shergill, M. O'Sullivan, P. Golesworthy, P. McGuire, M. A. Horsfield, A. Simmons, S. C. Williams, and R. J. Howard, 'Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia,' Hum Brain Mapp, vol. 27, pp. 230-8, Mar 2006. [124] T. Taoka, S. Iwasaki, M. Sakamoto, H. Nakagawa, A. Fukusumi, K. Myochin, S. Hirohashi, T. Hoshida, and K. Kichikawa, 'Diffusion anisotropy and diffusivity of white matter tracts within the temporal stem in Alzheimer disease: evaluation of the 'tract of interest' by diffusion tensor tractography,' AJNR Am J Neuroradiol, vol. 27, pp. 1040-5, May 2006. [125] M. A. Rocca, E. Pagani, M. Absinta, P. Valsasina, A. Falini, G. Scotti, G. Comi, and M. Filippi, 'Altered functional and structural connectivities in patients with MS: a 3-T study,' Neurology, vol. 69, pp. 2136-45, Dec 4 2007. [126] M. Rovaris and M. Filippi, 'Diffusion tensor MRI in multiple sclerosis,' J Neuroimaging, vol. 17 Suppl 1, pp. 27S-30S, Apr 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37571 | - |
| dc.description.abstract | 近幾年來,運用磁振造影技術來探討不同大腦功能區之間的複雜神經連結性,為神經科學研究以及臨床神經性或是精神性疾病應用中相當重要的一個方法。擴散磁振造影由於具有非侵入式偵測神經纖維方向的優點,更是廣泛地被應用於解構複雜的神經連結。相較於傳統的擴散磁振造影技術,高角鑑別率擴散磁振造影技術能夠更精準地解析複雜的交叉神經結構。然而,此方法與解剖結構的相關性以及臨床應用的可行性仍需要作進一步之驗證。
因此,本論文的主要目的為增進高角鑑別率擴散磁振造影技術於臨床上應用的可行性,並且可分為下列三部份。第一為驗證擴散譜磁振造影技術與鼠癲癇模型中病灶的相關性。第二為發展一套系統性最佳化的方法來探討擴散譜磁振造影與Q球磁振造影技術於臨床上的可行性。最後,我們運用高溫超導射頻線圈來增進擴散張量磁振造影之信噪比,進而提升神經追蹤之準確度。 於癲癇鼠疾病模型之研究中,我們發現到擴散譜磁振造影之量化指標與病灶評估指標之間有存在顯著的相關性。平均擴散度與病灶評估指標在海馬迴中CA3處為正相關(r = 0.62; p = 0.0174)。至於非等向性指標在海馬迴中dentate gyrus處與病灶評估指標呈正相關(r = 0.71; p = 0.0047),而在CA3處中呈負相關(r = -0.63; p = 0.0151)。在臨床最佳化的研究中,我們發現到信噪比及角度解析度均為影響高角鑑別率擴散磁振造影技術最佳擴散敏感度之重要因素。此外,減少取樣法也能夠得到與正常取樣法接近之準確度。最後,我們驗證了在現有的系統中,運用高溫超導線圈能夠提升擴散張量磁振造影平均約為三倍之信噪比增益,更可將差異角度之標準差由40.11度縮小為34.88度,也同時增進了神經追蹤之準確度。 總結而言,我們驗證了擴散譜磁振造影與病灶評估間的相關性,也建立此技術於臨床上進一步應用之潛力。此外,我們也建立了一套最佳化高角鑑別率擴散磁振造影技術之方法,並且探討其最適當參數在臨床上之可行性。最後,在高溫超導射頻線圈的研究中,我們率先將其應用於擴散張量磁振造影的技術中,並且驗證了此方法於神經追蹤準確度上之增益。本論文成功地建立了高角鑑別率擴散磁振造影技術由動物研究轉移至臨床上的可行性以及最佳化之方法,相信對未來神經科學的基礎研究或是臨床診斷都有極大的助益。 | zh_TW |
| dc.description.abstract | Since last few years, magnetic resonance imaging (MRI) has become an important approach to map the complex neural connectivity between different functional areas for neuroscience research and clinical applications. With the ability of mapping fiber orientations non-invasively, diffusion MRI provides a novel aspect of depicting the structural connectivity of brain. Compared with conventional diffusion MRI techniques, high angular resolution diffusion MRI (HARDI) techniques have the capability of resolving complex neural fiber architectures. However, the histological correspondence of HARDI and its potential on clinical applications have not been well demonstrated yet.
Therefore, the overall objective of this dissertation is threefold and targeted to facilitate HARDI techniques for clinical use. First, we demonstrated the histological correspondence of one of the HARDI techniques, diffusion spectrum imaging (DSI), on a rat epilepsy model. Second, we developed a systematic approach to investigate two HARDI techniques, DSI and q-ball imaging (QBI), on a clinical 3T MRI system. Finally, we verified the capability of high-temperature superconducting (HTS) radiofrequency (RF) coil on diffusion tensor imaging (DTI) and investigated the association between signal-to-noise ratio (SNR) and accuracy of neural fiber tractography. In our results, significant subregion-dependent correlations were found between DSI indices and histological evaluation, namely Timm’s score. For mean diffusivity, positive correlation was found in cornu ammonis (CA3), r = 0.62; p = 0.0174. The correlation between diffusion anisotropy and Timm’s score showed positive correlation in dentate gyrus (DG), r = 0.71; p = 0.0047, and negative correlation in CA3, r = -0.63; p = 0.0151. For optimization study, our results indicated that the optimum maximum b-value (bmax) was a trade-off between SNR and angular resolution. At their own optimum bmax, the reduced sampling schemes yielded angular precision and accuracy comparable to the high sampling schemes. Finally, our results showed that HTS coil provided an average SNR gain of approximately three folds on our 3T MRI system, the standard deviation of deviation angles was significantly reduced from 40.11° to 34.88°, which also significantly improved the connectivity of fiber tracking. In summary, we successfully demonstrated the histological correspondence of our proposed DSI indices and their potential use on clinical applications. Additionally, we verified the clinical feasibility of HARDI techniques, DSI and QBI, and found the optimum sequence parameters for their reduced sampling schemes. Finally, we demonstrated the capability of HTS coil on improving neural fiber tractography inferred from DTI data. Conclusively, our proposed methods can further advance the translation of HARDI techniques from laboratory to clinical setting, which will be potentially useful to facilitate the neuroscience research and clinical applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:33:13Z (GMT). No. of bitstreams: 1 ntu-97-D92921027-1.pdf: 25483881 bytes, checksum: 9b472859e2e851854e5a5ec1ed13ecc9 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Cover……………………………………………………………………….1
Acknowledgement……………………………………………………..…...4 Chinese Abstract…………………………………………………………...6 English Abstract……………………………………………………………8 Contents…………………………………………………………………...10 List of Figures………………………………………………………….....14 List of Tables……………………………………………………………...17 Chapter 1 Introduction 1.1 Background…………………………………………………….18 1.1.1 Neural connectivity of the brain………………………18 1.1.2 Diffusion MRI and its advanced models………...……21 1.2 Motivation and Purpose……………………………………......40 1.2.1 Motivation…………………………………………......40 1.2.2 Purpose…………………………………………..........41 1.3 Outline…….……………………………………........................42 Chapter 2 Diffusion Spectrum Imaging on Rat Epilepsy Model 2.1 Introduction…………………………………………………….49 2.2 Theory………………………………………………………….54 2.2.1 DSI reconstruction………………………...…………..54 2.2.2 DSI index derivation……………………...…………...55 2.2.3 DTI reconstruction from DSI dataset……..…………..56 2.2.4 Index mapping of DSI vs. DTI……………………......57 2.3 Materials and Methods…………………………………………57 2.3.1 Pilocarpine-induced SE rat model…………………….57 2.3.2 MRI experiment……………………………………….59 2.3.3 Timm’s staining……………………………………….60 2.3.4 Statistical analysis…………………………………......62 2.4 Results………………………………………….………………62 2.4.1 Group comparison: control vs. SE…………………….62 2.4.1 Correlation results…………………………………......64 2.5 Discussions…………………………………………………......64 2.5.1 Reliability of DSI indices……………………………..65 2.5.2 Histological correspondence of DSI indices………......66 2.5.3 DSI vs. DTI……………………………………………68 2.5.4 DSI vs. MEMRI……………………………………….69 2.5.5 Limitations…………………………………………….70 2.6 Conclusion……………………………………………………..70 Chapter 3 High Angular Resolution Diffusion MRI on Clinical MRI Systems 3.1 Introduction……………………………………………….……80 3.2 Materials and Methods…………………………………………83 3.2.1 DSI and QBI………………………………………......83 3.2.2 Simulation…………………………………………......86 3.2.3 Verification study……………………………………..90 3.2.4 MRI experiment……………………………………….91 3.3 Results………………………………………………………..92 3.3.1 Simulation…………………………………………......92 3.3.2 Verification study……………………………………..94 3.4 Discussions…………………………………………………......95 3.4.1 DSI vs. QBI……………………………………………96 3.4.2 Simulation vs. verification study……………………...98 3.4.3 Trade-off between SNR and optimum parameters……99 3.4.4 Narrow-pulse prerequisite on clinical systems……....100 3.4.5 Limitations…………………………………………...101 3.5 Conclusion………………………………………………...….103 Chapter 4 High-temperature Superconducting RF Coil on Diffusion Tensor Imaging 4.1 Introduction…………………………………………………...116 4.2 Materials and Methods……………………………………......118 4.2.1 DTI principle and fiber tracking…………………......118 4.2.2 SNR vs. coil parameters……………………………...121 4.2.3 HTS coil fabrication…………………………………122 4.2.4 MRI experiment……………………………………...124 4.2.5 Data analysis…………………………………………125 4.3 Results and Discussions………………………………………126 4.3.1 SNR of anatomical images and DWI………………...126 4.3.2 Deviation angle analysis…………………………...127 4.3.3 Comparison of fiber tracking………………………...128 4.4 Conclusion……………………………………………………129 Chapter 5 Discussions and Conclusion 5.1 Discussions……………………………………………………138 5.1.1 HARDI techniques…………………………………...138 5.1.2 Translation from laboratory to clinical setting………142 5.1.3 Limitations on HTS coil development……………….147 5.2 Conclusion……………………………………………………151 5.3 Future Works………………………………………………….152 Reference………………………………………………………………...162 Honors and Publications…………………………………………………171 | |
| dc.language.iso | en | |
| dc.subject | 擴散張量磁振造影 | zh_TW |
| dc.subject | Q球磁振造影 | zh_TW |
| dc.subject | 擴散譜磁振造影 | zh_TW |
| dc.subject | 高角鑑別率擴散磁振造影 | zh_TW |
| dc.subject | 擴散磁振造影 | zh_TW |
| dc.subject | 神經連結性 | zh_TW |
| dc.subject | 高溫超導射頻線圈 | zh_TW |
| dc.subject | 信噪比 | zh_TW |
| dc.subject | 最佳擴散敏感度 | zh_TW |
| dc.subject | 癲癇 | zh_TW |
| dc.subject | optimum diffusion sensitivity | en |
| dc.subject | neural connectivity | en |
| dc.subject | high angular resolution diffusion MRI | en |
| dc.subject | diffusion spectrum imaging | en |
| dc.subject | q-ball imaging | en |
| dc.subject | diffusion tensor imaging | en |
| dc.subject | epilepsy | en |
| dc.subject | signal-to-noise ratio | en |
| dc.subject | high-temperature superconducting RF coil | en |
| dc.title | 高角鑑別率擴散磁振造影技術於神經纖維結構之研究 | zh_TW |
| dc.title | High Angular Resolution Diffusion MRI of Complex Neural Fiber Architecture | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 曾志朗,黃榮村,李嗣涔,廖漢文,張恕,孫永年,楊鴻昌 | |
| dc.subject.keyword | 神經連結性,擴散磁振造影,高角鑑別率擴散磁振造影,擴散譜磁振造影,Q球磁振造影,擴散張量磁振造影,癲癇,最佳擴散敏感度,信噪比,高溫超導射頻線圈, | zh_TW |
| dc.subject.keyword | neural connectivity,high angular resolution diffusion MRI,diffusion spectrum imaging,q-ball imaging,diffusion tensor imaging,epilepsy,optimum diffusion sensitivity,signal-to-noise ratio,high-temperature superconducting RF coil, | en |
| dc.relation.page | 174 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 24.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
