Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37547
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文章(Wen-Chang Chen)
dc.contributor.authorChih-Feng Wangen
dc.contributor.author王誌鋒zh_TW
dc.date.accessioned2021-06-13T15:32:13Z-
dc.date.available2011-07-21
dc.date.copyright2008-07-21
dc.date.issued2008
dc.date.submitted2008-07-14
dc.identifier.citation[1]. Shirakawa, H.; Louis, E. J. J. Chem. Soc. Chem. Conmmun. 1977, 16, 578-579.
[2]. Gustafsson, G..; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, 477.
[3]. Pei, Q.; Yu, G.; Zhang, C.; Yang, Y.; Heeger, A. J. Science 1995, 269,1086.
[4]. Kulkarni, AP.; Zhu, Y.; Jenekhe S. A. Macromolecules 2005, 38, 1553.
[5]. Yang, Y.; Heeger A. J. Nature 1994, 372, 344.
[6]. Sittinghuaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741.
[7]. Babel, A.; Wind, JD.; Jenekhe, S. A. Adv. Funct. Mater. 2004, 14, 891.
[8]. Yu, G.; Cao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.
[9]. Yu, G.; Wang, J.; McElvain, Jon.; Heeger, A. J. Adv. Mater. 1998, 10, 1431.
[10]. Alam, MM.; Jenekhe, S. A. Chem. Mater. 2004,16, 4647.
[11]. Huang, F.; Hou, L.; Wu, H.; Wang, X.; Shen, H.; Cao, W.; Yang, W.; Cao, Y. J. Am. Chem. Soc. 2004, 126, 9845.
[12]. Van Mullekom, H.A.M.; Vekemans, J.A.J.M.; Havinga, E.E.; Meijer, E.W. Mat. Sci. Eng. R. 2001, 32, 1-40.
[13]. Cheng, K.F.; Liu, C.L.; Chen, W. C. J. Polymer Science Polymer. Chem. 2007, 45, 5872.
[14]. Roncali, J. Chem. Rev. 1997, 97, 173.
[15]. Campos, L. M.; Tontcheva, A.; Gunes, S.; Sonmez, G.; Neugebauar, H.; Sariciftci, N.S.; Wudl, F. Chem. Mater. 2005, 17, 4031.
[16]. Champion, R. D.; Cheng, K. F.; Pai, C. L.; Chen, W. C.; Jenekhe, S. A. Macromol. Rapid. Commun. 2005, 26, 1835.
[17]. Zhu, Y.; Champion, R. D.; Jenekhe, S. A. Macromolecules 2006, 39, 8712.
[18]. Berlin, A.; Canavesi, A.; Pagani, G.; Schiavon, G.; Zecchin, S.; Zotti, G. Synth. Met. 1997, 84, 451.
[19]. Lin, S. C.; Chen, J. A.; Liu, M. H.; Su, Y. O.; Leung, M. K. J. Org. Chem. 1998, 63, 5059.
[20]. Berin, A.; Zanelli, A. Chem Mater. 2004, 16, 3667.
[21]. Casado, J.; Ortiz, R. P.; Delgado, M. C. R.; Hernandez, V.; Raimundo, J. M.; Blanchard, P.; Allain, M.; Roncali, J. J. Phys. Chem. B 2005, 109, 1661.
[22]. Ego, C.; Marsitzky, D.; Becker, S.; Zhang, J.; Grimsdale, A. C.; Mullen, K.; Mackenzie, J. D.; Silva, C.; Friend, R. H. J. Am. Chem. Soc. 2003, 125, 437.
[23]. Xia, Y.; Deng, X.; Wang, L.; Li, X.; Zhu, X.; Cao, Y. Macromol. Rapid. Commun. 2006, 27, 1260.
[24]. Ng, S. C.; Lu, H. F.; Chan, H. S. O.; Fujii, A.; Laga, T.; Yoshino, K. Macromolecules, 2001, 34, 6895.
[25]. Yasuda, T.; Imase, T.; Yamamoto, T. Macromolecules, 2005, 38, 7378.
[26]. Huang, J.; Niu, Y.; Yang. W.; Mo. Y.; Yuan. M.; Cao, Y. Macromolecules 2002, 35, 6080.
[27]. Pan, X.; Liu, S.; Chan, H. S. O.; Ng, S. C. Macromolecules 2005, 38, 7629.
[28]. Havinga, E. E.; Hoeve, W. ten; Wynberg, H.; Synth. Met. 1993, 299, 55.
[29]. Sotzing, G. A.; Thomas, C. A.; Reynolds, J.R. Macromolecules 1998, 31, 3750.
[30]. Lee, B. L.; Yamamoto Macromolecules 1999, 32, 1375.
[31]. Delnoye, D. A. P.; Sijbesma, R. P.; Vekemans, J. A. J. M.; Meijer, E. W. J. Am. Chem. Soc. 1996, 118, 8717.
[32]. Tanaka, S.; Yamashita, Y. Synth. Met. 1993, 55-57, 1251.
[33]. Tanaka, S.; Yamashita, Y. Synth. Met. 1995, 69, 599.
[34]. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539.
[35]. Doi, S.; Kuwabara, M.; Noguchi, T.; Ohnishi, T. Synth Met. 1993, 57, 4174.
[36]. Heeger, A. J.; Braun, D. (UNIAX); WO-B 92/16023, 1992 [Chem. Abstr. 1993, 118, 15740j].
[37]. Tonzola, C. J.; Alam, M. M.; Jenekhe, S. A. Macromolecules 2005,38, 9539.
[38]. Xia, Y; Luo, J.; Deng, X.; Li, X.; Li, D.; Zhu, X.; Yang, W.; Cao, Y. Macromolecules 2006, 207, 511.
[39]. Tu, G. L.; Mei, C. Y.; Zhou, Q. G.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Ma. D. G.; Jing, Z. B.; Wang, F. S. Adv. Funct. Mater. 2006, 16, 101.
[40]. Schon, J. H.; Kloc, C.; Batlogg, B. Org. Electron. 2000, 1, 57.
[41]. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401, 685.
[42]. Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. Science 2000, 290, 2123.
[43]. Yamamoto, T.; Yasuda, T.; Sakai, Y.; Aramaki, S.; Ramaw, A. Marcomol. Rapid Commun. 2005, 26,1214.
[44]. Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
[45]. Dhanabalan, A.; van Duren, J. K. J.; van Hal, P. A.; van Dongen, J. L. J.; Janssen R. A. J. Adv. Funct. Mater. 2001, 11, 255-262.
[46]. Svensson, M.; Zhang, F. L.;Veenstra, S. C.; Verhees, W. J. H.; Hummelen, J. C.; Kroon, J. M.; Inganas, O.; Andersson, M. R. Adv. Mater. 2003,15, 988.
[47]. Zhang, F. L.; Jesperson, K. G.; Bjorstrom, S.; Svensson, M.; Andersson, M. R.; Sundstrom, V.; Magnusson, K.; Moons, E.; Yartsev, A.; Inganas, O. Adv. Funct. Mater. 2006, 16, 667.
[48]. Soci, C.; Hwang, I. W.; Moses, D.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec, C. J.; Heeger, A. J. Adv. Funct. Mater. 2007, 17, 632.
[49]. Nayak, K.; Marynick, D. S. Marcomolecules 1990, 23, 2237.
[50]. Pomerantz, M.; Chaloner-Gill, B.; Hardinf, L.O.; Tseng, J. J.; Pomerantz, W. J. J. Chem. Soc., Chem. Commun. 1992, 22, 1672.
[51]. Kenning D. D.; Rasmussen, S. C. Macromolecules 2003, 36, 6298.
[52]. Wu, W. C.; Lee, W. Y.; Chen, W. C. Macromol. Chem. Phys. 2006, 207, 1131.
[53]. Xia, Y.; Luo, J.; Deng, X.; Li, X.; Li, D.; Zhu, X.; Yang, W.; Cao, Y. Macromol. Chem. Phys. 2006, 207, 511.
[54]. Gilman, H.; Broadbent, H. S. J Am Chem Soc 1948, 70, 2619.
[55]. Tseng, Y. H.; Wu, F. I.; Shih, P. I.; Shu, C. F. J Polym Sci Part A: Polym Chem 2005, 43, 5147.
[56]. Shahid, M.; Ashraf, R. S.; Klemm, E.; Sensfuss, S. Macromolecules 2006, 39, 7844.
[57]. Li, Y.; Ding, J.; Day, M.; Tao, Y.; Lu, J.; Diorio, M. Chem. Mater. 2004, 16,2165.
[58]. Pham, C. V.; Macomber, R. S.; Mark, H. B.; Jr.; Zimmer, H. J.Org. Chem. 1984, 49, 5250.
[59]. Mammo, W.; Admassie, S.; Gadisa, A.; Zhang, F.; Inganas, O.; Andersson, M. R. Solar Energy Materials & Solar Cells 2007, 91, 1010.
[60]. Wu, W. C.; Liu, C. L.; Chen, W. C. Polymer 2006, 47, 527.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37547-
dc.description.abstract電子施體/受體共軛高分子在最近幾年被廣泛的研究。 藉由選擇不同的施體和受體,共軛高分子具有不同電子和光學特性。 因此共軛高分子在發光二極體,太陽能電池和薄膜電晶體上有廣泛應用。 然而,以thienopyrazine為主的電子施體-電子受體和電子施體-電子受體-電子施體共軛高分子在薄膜電晶體上的應用尚未深入的研究。此論文目標主要是以成thienopyrazine結構為主之共軛高分子合成,光電性質分析和在薄膜電晶體上的應用。
在第二章,合成新穎的thienopyrazine和電子施體的共軛高分子材料。四種共軛高分子均具有良好的溶解度,光學性質在薄膜狀態下具有寬廣的吸收,其最大吸收峰約在540到950nm左右,其中以PTPTP的能隙為最小,表示具有較強的分子內電荷傳遞。其電化學性質均具有低游離能 (4.57-4.99eV) 和高電子親和力(3.26-3.49eV)。 PDPTP、PCPTP和PTPTP的電洞遷移率分別為2.62×10-6、2.74×10-5和2.00×10-4 cm2V-1s-1。 PTPTP具有最高的電洞遷移率是因為有較低的能隙和較強的分子內電荷轉移。由原子力顯微鏡可知共軛高分子在薄膜狀態下均為平滑和無定形的。 因此,分子內電荷傳遞可能是主要影響電洞遷移率的因素。
在第三章,合成以thienopyrazine為主的電子施體-電子受體-電子施體的共軛高分子。從薄膜狀態的吸收光譜圖中可知,三種共軛高分子具有寬廣的吸收範圍延伸到紅外光區且具有小的能隙 (1.15-1.57eV)。在電化學循環伏安法均具有可逆的氧化還原和低游離能 (4.62-4.98 eV)。PDDTTP、PFDTTP和PDTTP的電洞遷移率分別為7.24×10-4、1.61×10-3和1.16×10-3cm2V-1s-1。 従原子力顯微鏡中,可發現PFDTTP具有較平滑且無定形的型態,因此其電洞遷移率為最高。從上述結果可知thienopyrazine為主的電子施體-電子受體-電子施體的共軛高分子兼具有廣的吸收範圍且高的電洞遷移率。因此,這三種共軛高分子在薄膜電晶體跟太陽能電池材料的應用上,具有不錯潛力。
zh_TW
dc.description.abstractDonor-acceptor conjugated polymers have been widely investigated in recent years. By optimization of donor and acceptor structures, the conjugated copolymers can exhibit broad absorption from visible region to near-infrared range for electronic and optoelectronic applications, such as light-emitting diodes, photovoltaic cells, and thin film transistor. However, the electronic and optoelectronic properties of thienopyrazine-based conjugated polymers have not been fully explored yet. The goal of this thesis is to investigate the effects of donor-acceptor or donor-acceptor-donor structures on the electronic properties of thienopyrazine based conjugated polymers.
In chapter 2, the optical, electrochemical, and field effect charge transport properties of the new thienopyrazine-based alternating donor-acceptor conjugated copolymers were explored. The new copolymers, Poly[5-(2,5-bis(decyloxy)phenyl)-2,3-
bis(4-(2-ethylhexyloxy)phenyl)thieno[3,4-b]pyrazine] (PDPTP), Poly[5-(9,9-dioctyl-
9H-fluoren-2-yl)-2,3-bis(4-(2-ethylhexyloxy)phenyl)thieno[3,4-b]pyrazine] (PFPTP), Poly[5-(9-(2-ethylhexyl)-9H-carbazol-3-yl)-2,3-bis(4-(2-ethylhexyloxy)phenyl)thieno[3,4-b]pyrazine] (PCPTP) and Poly[2,3-bis(4-(2-ethylhexyloxy)phenyl)-5-(thiophen-2-yl)
thieno[3,4-b]pyrazine] (PTPTP) had excellent solubility and broad optical absorption bands with absorption maxima at 540-950nm in thin film. The PTPTP exhibits the smallest band gap (0.98eV), indicating a stronger intramolecular charge transfer. The four polymers show the low ionization potentials (4.57-4.99 eV) and high electron affinity (3.26-3.49eV). The hole mobilities of PDPTP, PCPTP, and PTPTP are 2.62×10-6, 2.74×10-5, and 2.00×10-4 cm2V-1s-1. PTPTP has the highest hole mobility due to low band gap and strong intramolecular charge transfer.The AFM topographic images of the copolymers show smooth and amorphous phases. From these results, intramolecular charge transfer might be main impact on hole mobility.
In chapter 3, thienopyrazine-based donor-acceptor-donor alternating conjugated copolymers were synthesized. The copolymers including Poly[5-(5-(2,5-bis(decyloxy)-4-methylphenyl)thiophen-2-yl)-2,3-bis(4-(2-ethylhexyloxy)phenyl)-7-(5-methylthiophen-2-yl)thieno[3,4-b]pyrazine] (PDDTTP), Poly[5-(5-(9,9-
dioctyl-9H-fluoren-2-yl)thiophen-2-yl)-2,3-bis(4-(2-ethylhexyloxy)phenyl)-7-(thiophen-2-yl)thieno[3,4-b]pyrazine] (PFDTTP), and Poly[2,3-bis(4-(2-ethylhexyloxy)phenyl)-5
,7-di(thiophen-2-yl)thieno[3,4-b]pyrazine] (PDTTP) exhibit broad optical absorption bands (662-816nm) and small optical band gaps (1.15-1.57eV). All polymers exhibit reversible oxidation and reduction and low ionization potential (4.62-4.98 eV). The hole mobility of PDDTTP, PFDTTP, and PDTTP are 7.24×10-4, 1.61×10-3 and 1.16×10-3cm2V-1s-1. The hole mobility of PFDTTP is the highest probably due to the relatively smooth and amorphous phase in thin film. According to these results, thienopyrazine-based donor-acceptor-donor copolymers combine small band gap and high carrier mobility. Such polymers may have potential optoelectronic device applications, such as thin film transistor and photovoltaic cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:32:13Z (GMT). No. of bitstreams: 1
ntu-97-R95524016-1.pdf: 2252288 bytes, checksum: ae38e9b87ba496e14d20760150cb3a1f (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsAbstract I
中文摘要 III
Contents IV
Table Captions VII
Figure Captions VIII
Chapter 1 Introduction 1
1-1 Introduction to Conjugated Polymers 1
1-1-1 Development of Conjugated Polymers 1
1-1-2 Electronic Structure of Conjugated Polymers 2
1-2 Donor-Acceptor Alternating Conjugated Polymers 5
1-2-1 Applications on Donor-Acceptor Alternating Conjugated Polymers 6
1-3 Introduction of Thienopyrazine Conjugated Polymers 10
1-4 Research Objectives 11
Chapter 2 Synthesis and Optoelectronic Properties of Donor-Acceptor Alternating Conjugated Polymers based on 2,3-bis(4 -(2-ethylhexyloxy)phenyl)thienopyrazine 16
2-1 Introduction 16
2-2 Experimental Section 17
2-2-1 Materials 17
2-2-2 Synthesis of Monomers 18
2-2-3 General Procedures of Polymerization 21
2-2-4 Characterization 24
2-3 Results and Discussion 26
2-3-1 Synthesis and Characterization 26
2-3-2 Thermal Properties 26
2-3-3 Optical Properties 27
2-3-4 Electrochemical Properties 28
2-3-5 Field Effect Transistor Characteristics 29
2-4 Conclusions 30
Chapter 3 Synthesis and Optoelectronic Properties of Donor-Acceptor Conjugated polymers Based on Thiophene-2,3-bis(4-(2-ethylhexyloxy)phenyl)Thienopyrazine-Thiophene 48
3-1 Introduction 48
3-2 Experimental Section 49
3-2-1 Materials. 49
3-2-2 Synthesis of Monomers 49
3-2-3 Polymer Synthesis 51
3-2-4 Characterization 52
3-3 Results and Discussion 55
3-3-1 Synthesis and Characterization 55
3-3-2 Thermal Properties 55
3-3-3 Optical Properties 56
3-3-4 Electrochemical Properties 57
3-3-5 Field Effect Transistor Characteristics 58
3-4 Conclusions 59

Chapter 4 Conclusions 75
References 78
dc.language.isoen
dc.subject電子施體/受體共軛高分子zh_TW
dc.subjectDonor-Acceptor Conjugateden
dc.subjectThienopyrazineen
dc.titleThienopyrazine電子施體-受體共軛高分子之合成、性質及其光電元件應用zh_TW
dc.titleThienopyrazine-based Donor-Acceptor Conjugated Polymers : Synthesis, Properties, and Optoelectronic Device Applicationsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉貴生,蔡豐羽,陳方中
dc.subject.keyword電子施體/受體共軛高分子,zh_TW
dc.subject.keywordThienopyrazine,Donor-Acceptor Conjugated,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2008-07-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved