Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37530
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁建均
dc.contributor.authorNu-Chuan Shenen
dc.contributor.author沈汝川zh_TW
dc.date.accessioned2021-06-13T15:31:31Z-
dc.date.available2011-07-16
dc.date.copyright2008-07-16
dc.date.issued2008
dc.date.submitted2008-07-15
dc.identifier.citationImage processing
[1] R. C. Gonzolez, R. E. Woods, 'Digital Image Processing second edition', Prentice Hall, 2002
[2] R. C. Gonzolez, R. E. Woods, S. L. Eddins, 'Digital Image Processing Using Matlab', Prentice Hall, 2004
[3] T. Acharya, A. K. Ray, 'Image Processing: Principles and Applications', John Wiley & Sons, 2005
[4] G. K. Wallace, “The JPEG still picture compression standard”, in IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, Jun 1996
[5] K. Al-Shaykh, “JPEG-2000: A new still image compression standard”, in Conference Record of Thirty-Second Asilomar Conference on Signals Systems and Computers, vol. 1, pp. 99-103, 1998
[6] N. Ahmed, “Discrete cosine transformation”, IEEE Transactions on Computers, vol. 23, pp. 90-93, Jan. 1974
Image Coding
[7] B. D. Goel, “A data compression algorithm for color images based on run-length coding and fractal geometry”, IEEE International Conference on Communications, vol. 3, pp. 1253-6, 1988
[8] S. P. Hiss, “Text compression using Huffman codes”, Proceedings of the Seventeenth Southeastern Symposium on System Theory, IEEE Computer Soc. Press, pp. 273-7, Mar 1985
1-D Wavelet Transform
[9] M. G.Strintzis, S. Member, “Optimal biorthogonal wavelet bases for signal decomposition”, IEEE Transactions On Signal Processing, vol. 44, no. 6, Jun 1996
[10] W. Sweldens, “The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets,” Appl. Comput. Harmon. Anal., vol 3, pp186-200, 1996.
[11] S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, Jul 1989
[12] S. Mallat, “A Wavelet Tour of Signal Processing”, Academic Press, 2nd, 1999
[13] I. Daubechies, “Ten Lectures on Wavelets”, Philadelphia, Society for Industrial and Applied Mathematics, 1992
2-D Wavelet Transform
[14] F. Marino, “Two Fast Architectures for the Direct 2-D Discrete Wavelet Transform”, IEEE Transactions On Signal Processing, vol. 49, no. 6, Jun 2001
Fast Wavelet Transform
[15] O. Rioul and P. Duhamel, 'Fast Algorithms for Discrete and Continuous Wavelet Transforms', IEEE Transactions On Information Theory, vol. 38, No. 2, Mar 1992
[16] H. Murakami, “Discrete Wavelet Transform Based on Cyclic Convolutions”, IEEE Transactions On Signal Processing, vol. 52, no. 1, Jan 2004

Efficiency Analysis of Wavelet Energy
[17] L. Shang, J. Jaeger, R. Krebs, “Efficiency Analysis of Data Compression of Power System Transients using Wavelet Transform”, IEEE Bologna Powe rTech Conference, Jun 2003
Image Compression of Wavelet Transform
[18] L. Shen and Q. Sun, “Biorthogonal Wavelet System for High-Resolution Image Reconstruction”, IEEE Transactions On Signal Processing,, vol. 52, no. 7, Jul 2004
[19] H. Kim and C. C. Li, “Lossless and Lossy Image Compression Using Biorthogonal Wavelet Transforms with Multiplierless Operations”, IEEE Transactions On Circuits And System—II: Analog And Digital Signal Processing, vol. 45, no. 8, Aug 1998
[20] B. E. Usevitch, “A Tutorial on Modern Lossy Wavelet Image Compression: Foundations of JPEG 2000”, IEEE Signal Processing Magazine, vol. 18, pp. 22-35, Sep. 2001
[21] C. N. Taylor and S. Dey, “Adaptive Image Compression for Wireless Multimedia Communication” Communications, 2001. ICC 2001. IEEE International Conference on, Jun 2001
Application of Wavelet Transform
[22] S. S.Rao, Michael J. L. and P. P.Gandhi. “Biorthogonal Wavelets for Waveform Coding in BPSK and QPSK System”, IEEE System Theory, Mar 1994
[23] E. N, Bao. F, Chen. Z “Wavelet Modulation: A Prototype for Digital Communication Systems”, IEEE Southcon/95.Coference Record, Mar 19995.
[24] G..C, Tziritas.G, “Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis ” Multimedia, IEEE Transactions on, Sep 1999.
[25] G. Xiaopoing, G. Zequn, “Edge Detection of High Resolution Remote Sensing Imagery Using Wavelet”, Info-tech and Info-net, 2001Processing, vol. 1 ,Nov 2001.
[26] A.S Lewis, G.. Knowles “Video Compression Using 3D Wavelet Transforms”, Electronics Letters, vol 26, issue 6, Mar 1990.
[27] P. Sagetong, W. Zhou, “Dynamic Wavelet Feature-Based Watermarking for Copyright Tracking in Digital Movie Distribution Systems” Image Processing 2002, vol 3, Jun 2002.
FFT Algorithm
[28] P. Duhamel, 'Implementation of “Split-Radix” FFT Algorithms for Complex, Real, and Real-Symmetric Data', IEEE Trans. Acoustics. Speech, and Signal Processing. vol. ASSP-34. No. 2, Apr 1986
[29] Z. Mou, and P. Duhamel, 'Short-Length FIR Filters and Their Use in Fast Nonrecursive Filtering', IEEE Trans. Signal Process., vol. 39, No.6, June 1991
About Convolution
[30] B. R. HUNT, ' A matrix theory proof of the discrete convolution theorem', IEEE trans. audio electroacoust, vol. -19, 4 Dec 1971
[31] G. P. M. Egelmeers and P. C. W. Sommen, “A new method for efficient convolution in frequency domain by nonuniform partitioning for adaptive filtering”, IEEE Trans. Signal Process., vol. 44, No.12, Jun 1996
[32] J. K. Kuk and N. I. Cho, “Block convolution with arbitrary delays using fast Fourier transform”, ISPACS 2005
[33] G. García, “Optimal Filter Partition for Efficient Convolution with Short Input Output Delay”, Aes 113th Convention, Los Angeles, CA, USA, Oct, 2002
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37530-
dc.description.abstract離散小波轉換 (discrete wavelet transform),是大家耳熟能詳的一個數學工具。它被廣泛的應用在工程上,訊號處理上,影像處理上,以及其他許多方面。
在這本論文中,我先簡單的介紹離散小波轉換和他的應用,再來我會用我這篇文章所提出的一個方法分段摺積(sectioned convolution)來簡化離散小波的運算複雜度。
分段摺積是一種摺積運算的快速演算法,將輸入的訊號切割成長度L的大小來做運算。不但可以藉此來解決運算延遲的問題,整體運算的速度和系統的複雜度都可以大幅度的提升。
分段摺積離散小波轉換(sectioned convolution discrete wavelet transform SCDWT)是一種分段摺積的應用。將傳統離散小波轉換中使用傳統摺積的地方用分段摺積來取代。高效率實作的分段摺積離散小波轉換(efficiency implementation sectioned convolution discrete wavelet transform EISCDWT)它的架構和高效率實作的離散小波轉換(efficiency implementation discrete wavelet transform)相同,並且和分段摺積離散小波轉換一樣,都是將傳統離散小波轉換中使用傳統摺積的地方用分段摺積來取代,藉此來有效的提升運算速度和降低運算複雜度。除了上述提升運算速度和降低運算複雜度這兩個優點外,我們意外的發現它也降低了系統設計的複雜度。這是因為我們將訊號切割成等長每段都是L,這固定了快速離散傅立葉運算的點數,也降低了系統設計的負雜度。
近年來,關於離散小波轉換的研究,可以說是蓬勃發展。它被廣泛的用在各種不同的應用上。在第三章裡我們有做一些簡單的介紹,我們所提出來的改良方法,相信在這些應用上絕對能提升它們的競爭力。
在這本論文中,我將簡單的介紹一下離散小波轉換和它的應用。再來就將重點放在我們所以提出的方法,並且將它和過往的方法做些詳細的比較。
在第一章,我將介紹離散小波轉換的一些基本概念。
在第二章,我將詳細的介紹離散小波轉換,對它的推導、性質做分析。
在第三章,簡單的介紹一些離散小波轉換的應用。
在第四章,高效能實作的離散小波轉換系統的分析。在這章我比較了高效能實作的離散小波轉換和離散小波轉換運算複雜度的比較。
第五章,我將仔細的說明分段摺積。並且詳細的比較分段摺積和傳統摺積的差別,從運算速度和運算複雜度這兩方面來進行分析。基於公平性,這章中,所以比較運的模擬都是我們自己寫的,沒有用到任何內建的程式。
在第六章,我將分析分段摺積運用在離散小波轉換和高效能實作的離散小波轉換上的效能。並且詳細的比較離散小波轉換、分段摺積離散小波轉換和高效率實作的分段摺積離散小波轉換在一階和二階上的運算複雜度。最後我們將利用高效率實作的分段摺積離散小波轉換來做壓縮的JPEG2000和離散餘弦轉換的JPEG作比較。
第七章和第八章中,我將介紹一些其他改善離散小波轉換效能的方法。
在第九章,我作個結論。在參考資料 (Reference) 部分,我也對目前相關領域的研究,加以分類整理。
希望這本論文對您有幫助。
zh_TW
dc.description.abstractDiscrete wavelet transform (DWT) is a very popular mathematical tool. It has been widely applied in engineering, signal processing and image processing, etc.
In this thesis, we will introduce the DWT and the application of it and then I will use a method called sectioned convolution that proposed in this thesis to reduce the complexity of the DWT. The sectioned convolution is a fast algorithm of convolution by splitting the input of signal into section by section with sectioned length L, so we do not have to do the convolution until all the signal is received. It not only finds out a way to solve the delay problem but also reduces the computation time and computation complexity very much.
The sectioned convolution discrete wavelet transform (SCDWT) is an application of sectioned convolution. It replaces all the traditional convolution computation in the DWT into the sectioned convolution. The efficiency implementation sectioned convolution discrete wavelet transform (EISCDWT) is an efficient way to implement the DWT. Its concept just likes the efficient implementation discrete wavelet transform but we use the sectioned convolution to instead of the traditional convolution. By this replacement, we can reduce the computation complexity and computation time. Beside the advantages that we mention above, there is another advantage that we also reduce the system complexity. Because we split the signal into the same length L, the point of FFT is fixed, the complexity of system is reduced.
Recently, there are many research works about the DWT. The DWT has been used for many applications. We believe that the algorithm that we proposed in this thesis can make the DWT more powerful and have a lot of potentiality in the future.
In this thesis, I will introduce the research works about the DWT systematically, including the research works of my professor and I and do a detailed comparison to the previous works.
In Chap. 1, I will introduce the basic ideas and history of the wavelet transform.
In Chap. 2, I will introduce the definition and the computation complexity of the DWT, including the detailed derivation, property.
In Chap. 3, I will introduce the applications of the DWT simply.
In Chap. 4, I will introduce the EIDWT and compare it to the traditional DWT in computation complexity.
In Chap. 5, I will introduce the sectioned convolution and compare it to the traditional convolution on computation time and computation complexity. Considering the fair competition, all the programmings in my thesis are written by myself.
In Chap. 9, I will do a detailed analysis of SCDWT and EISCDWT and a comparison between the DWT, SCDWT and EISCDWT. In the end of this chapter, I will compare the JPEG2000 with EISCDWT and JPEG wit DCT.
In Chaps. 7, 8, I will introduce other researches of method to improve the efficiency of DWT
May this thesis be helpful for you.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:31:31Z (GMT). No. of bitstreams: 1
ntu-97-R95942110-1.pdf: 1301419 bytes, checksum: 635d98b60e7d887a778c653cb0d4c9e3 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsABSTRACT #
Chapter 1 Introduction 1
1.1 Basic Ideas 1
1.2 History of Development of Wavelets 2
1.3 The Abbreviations Used in This Thesis 3
Chapter 2 Discrete Wavelet Transform 5
2.1 Introduction 5
2.2 Scaling Function 5
2.3 Multiresolution Analysis (MRA) 6
2.4 Wavelet Function 6
2.5 Discrete Wavelet Transform 7
2.6 The Daubechies Wavelet Transforms 9
2.7 Symmlets and Coiflets Wavelets 12
2.8 Two Dimension Discrete Wavelet Transform 12
2.9 The Computation Complexity of 1-Dimension Discrete Wavelet Transform 15
2.10 The Complexity of 2-Dimension Discrete Wavelet Transform 17
2.10.1 The Complexity of 2 Dimension Orthogonal Case 17
2.10.2 The Complexity of the Biorthogonal Case 19
Chapter 3 Applications of the Wavelet 23
3.1 Image compression 23
3.2 Biorthogonal Wavelets for Waveform Coding in BPSK and QPSK System 24
3.3 Wavelet Modulation: A Prototype for Digital Communication System 24
3.4 Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis 25
3.5 Edge Detection of High Resolution Remote Sensing Imagery Using Wavelet 25
3.6 Video Compression Using 3D Wavelet Transform 26
3.7 Dynamic Wavelet Feature-Based Watermarking for Copyright Tracking in Digital Movie Distribution System 27
Chapter 4 Efficient Implementations of The DWT 29
4.1 Introduction 29
4.2 Energy Consumption Made by Discrete Wavelet Transform 30
4.2.1 Computation Energy 30
4.2.2 Communication Energy 31
4.3 Computation Complexity of DWT in Direct Way 31
4.4 Efficient Implement of the DWT 33
4.5 Computation Complexity of the Efficient Implement DWT 34
Chapter 5 Sectioned Convolution 39
5.1 Introduction 39
5.2 Sectioned Convolution 39
5.2.1 Overlap-Add Method 40
5.2.2 Overlap-Saved Method 44
5.3 The Computation Complexity of Sectioned Convolution with One Dimension Signal 47
5.4 The Computation Complexity of Sectioned Convolution with Two Dimension Signal 50
5.5 Simulation Result 53
5.5.1 Complexity and Computation Time of Sectioned Convolution 53
5.5.2 Comparing the Computation Complexity of the Sectioned Convolution with Doing Convolution in FFT-Method 54
5.5.3 Comparing the Computation Time of the Sectioned Convolution with Doing Convolution in FFT-Method 55
5.6 Conclusion 57
Chapter 6 Sectioned Convolution DWT and Efficient Implementation Sectioned Convolution DWT 59
6.1 Introduction 59
6.2 The Computation Complexity of 1 Dimension Sectioned Convolution DWT and Efficient Implementation Sectioned Convolution DWT 59
6.2.1 The Computation Complexity of Sectioned Convolution DWT (SCDWT) 60
6.2.2 The Computation Complexity of Efficient Implementation Sectioned Convolution DWT (EISCDWT) 61
6.2.3 Efficiency Comparison of 1 Dimension DWT 63
6.3 The Computation Complexity of 2 Dimension Sectioned Convolution DWT and Efficient Implementation Sectioned Convolution DWT 65
6.3.1 The Computation Complexity of the SCDWT in 2 Dimension Orthogonal Case 65
6.3.2 The Computation Complexity of the SCDWT in 2 Dimension Biorthogonal Case 68
6.3.3 The Computation Complexity of the EISCDWT in 2 Dimension Orthogonal Case 69
6.3.4 The Computation Complexity of the EISCDWT in 2 Dimension Biorthogonal Case 75
6.3.5 Efficiency Comparison of 2 Dimension Orthogonal DWT 78
6.3.6 Efficiency Comparison of 2 Dimension Biorthogonal DWT 81
6.3.7 Efficiency Comparison of 2 Dimension orthogonal DWT with Different Filter Length 83
6.4 Comparing the Computation Complexity, Compression Ratio and Compression Quality of the DCT in JPEG and DWT in JPEG 2000 85
6.4.1 Coding Redundancy 86
6.4.2 Interpixel Redundancy 86
6.4.3 Psychovisual Redundancy 87
6.4.4 Simulation Result 87
6.5 Conclusion 91
Chapter 7 Boundary Problems for Implementation 93
7.1 Introduction 93
7.2 Decomposition with Lower Compression Ratio 93
7.3 Reconstruction Problem 99
7.4 Conclusion 105
Chapter 8 Other Method to Improve the Efficiency of DWT 107
8.1 Using Symmetries Property to Reduce the Computation Complexity 107
8.2 Symmetric Input Signal and Symmetric Filter Coefficient 109
8.3 Improving the Efficiency of DWT by the DWT Matrix 110
Chapter 9 Conclusion and Future Work 113
9.1 Conclusion 113
9.2 Future Work 114
REFERENCE 115
dc.language.isoen
dc.subject摺積zh_TW
dc.subject小波轉換zh_TW
dc.subjectconvoluitonen
dc.subjectdiscrete wavelet transformen
dc.title分段摺積與小波轉換zh_TW
dc.titleSectioned Convoluion for Discrete Wavelet Transformen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王鵬華,郭景明
dc.subject.keyword摺積,小波轉換,zh_TW
dc.subject.keywordconvoluiton,discrete wavelet transform,en
dc.relation.page119
dc.rights.note有償授權
dc.date.accepted2008-07-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved