請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37523完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴凌平(Ling-Ping Lai) | |
| dc.contributor.author | Ru-Jiun Guan | en |
| dc.contributor.author | 關如珺 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:31:14Z | - |
| dc.date.available | 2010-01-01 | |
| dc.date.copyright | 2008-08-13 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-15 | |
| dc.identifier.citation | 參考文獻(Reference)
Abbott RD, Donahue RP, Kannel WB, Wilson PW. The impact of diabetes on survival following myocardial infarction in men vs. women: the Framingham Study. JAMA 1988; 260:3456–60. Aguilar D, Solomon SD, Køber L, Rouleau JL, Skali H, McMurray JJ, Francis GS, Henis M, O'Connor CM, Diaz R, Belenkov YN, Varshavsky S, Leimberger JD, Velazquez EJ, Califf RM, Pfeffer MA. Newly diagnosed and previously known diabetes mellitus and 1-year outcomes of acute myocardial infarction: the Valsartan in Acute Myocardial Infarction (VALIANT) Trial. Circulation. 2004; 110:1572–8. An D, Kewalramani G, Chan JKY, Qi D, Ghosh S, Pulinilkunnil T, Abrahani A, Innis SM, Rodrigues B. Metformin influences cardiomyocyte cell death by pathways that are dependent and independent of caspase-3. Diabetologia. 2006; 49:2174–84. Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996; 334:574-9. Bailey CJ, Day C. Antidiabetic drugs. Br J Cardiol. 2003; 10:128-36. Bhamra GS, Hausenloy DJ, Davidson SM, Carr RD, Paiva M, Wynne AM, Mocanu MM, Yellon DM. Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol. 2008; 103(3):274-84. Borutaite V, Morkuniene R, Brown GC. Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca2+-induced inhibition of substrate oxidation. Biochim Biophys Acta. 1999; 1453(1):41-8. Borutaite V, Jekabsone A, Morkuniene R, Brown GC. Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome c release and apoptosis induced by heart ischemia. J Mol Cell Cardiol. 2003; 35(4):357-66. Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword? J Clin Invest. 1985; 76(5):1713–9. Breda MA, Drinkwater DC, Laks H, Bhuta S, Corno AF, Davtyan HG, Chang P. Prevention of reperfusion injury in the neonatal heart with leukocyte-depleted blood. J Thorac Cardiovasc Surg. 1989; 97(5):654-65. Buja LM. Myocardial ischemia and reperfusion injury. Cardiovascular Pathology. 2005; 14:170-5. Burke MA, Mutharasan RK, Ardehali H. The sulfonylurea receptor, an atypical ATP-binding cassette protein, and its regulation of the KATP channel. Circ Res. 2008; 102:164-76. Calvert JW, Gundewar S, Jha S, Greer JJM, Bestermann WH, Tian R, Lefer DJ. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS– mediated signaling. Diabetes. 2008; 57:696–705. Capano M, Crompton M. Bax translocates to mitochondria of heart cells during simulated ischaemia: involvement of AMP-activated and p38 mitogen-activated protein kinases. Biochem J. 2006; 395:57–64. Cerra FB, Lajos TZ, Montes M, Siegel JH. Hemorrhagic infarction: A reperfusion injury following prolonged myocardial ischemic anoxia. Surgery. 1975; 78(1):95-104. Curtis MJ, Hearse DJ. Ischaemia-induced and reperfusion-induced arrhythmias differ in their sensitivity to potassium: implications for mechanisms of initiation and maintenance of ventricular fibrillation. J Mol Cell Cardiol. 1989; 21(1):21-40. Cusi K, DeFronzo RA. Metformin: a review of its metabolic effects. Diabetes Rev. 1998; 6:89-131. DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med. 1995; 333(9):541-9. D’Souza SP, Yellon DM, Martin C, Schulz R, Heusch G, Onody A, Ferdinandy P, Baxter GF. B-type natriuretic peptide limits infarct size in rat isolated hearts via KATP channel opening. Am J Physiol Heart Circ Physiol. 2003; 284:H1592–1600. Dyck JRB, Lopaschuk GD. AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol. 2006; 574:95–112. El-Mir MY, Detaille D, R-Villanueva G, Delgado-Esteban M, Guigas B, Attia S, Fontaine E, Almeida A, Leverve X. Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci. 2008; 34(1):77-87. Fryer LG, Parbu-Patel A, Carling D. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem. 2002; 277(28):25226-32. Gribble FM, Tucker SJ, Ashcroft FM. The essential role of the Walker A motifs of SUR1 in KATP channel activation by Mg–ADP and diazoxide. EMBO Journal. 1997; 16(6):1145–52. Gribble FM, Tucker SJ, Haug T, Ashcroft FM. MgATP activates the beta cell KATP channel by interaction with its SUR1 subunit. Proceedings of the National Academy of Science USA. 1998; 95(12):7185–90. Gross GJ, Peart JN. KATP channels and myocardial preconditioning: An update. Am J Physiol Heart Circ Physiol. 2003; 285: H921–30. Guigas B, Detaille D, Chauvin C, Batandier C, De Oliveira F, Fontaine E, Leverve X. Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem J. 2004; 382:877-84. Halestrap AP. The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochimica et Biophysica Acta. 1989; 973(3):355–82. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovascular Research. 2004; 61:372–85. Hardie DG. The AMP-activated protein kinase pathway-- new players upstream and downstream. J Cell Sci. 2004; 117(Pt 23):5479-87. Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, Hardie DG. 5'-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem. 1995; 270(45):27186-91. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996; 271(44):27879-87. Hickson-Bick DL, Buja ML, McMillin JB. Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes. J Mol Cell Cardiol. 2000; 32: 511–9. Ido Y, Carling D, Ruderman N. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes. 2002; 51(1):159-67. Igata M, Motoshima H, Tsuruzoe K, Kojima K, Matsumura T, Kondo T, Taguchi T, Nakamaru K, Yano M, Kukidome D, Matsumoto K, Toyonaga T, Asano T, Nishikawa T, Araki E. Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression. Circ Res. 2005; 97:837–44. Inzucchi SE, Maggs DG, Spollett GR, Page SL, Rife FS, Walton V, Shulman GI. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med. 1998; 338(13):867-72. Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA. 2002; 287(3):360-72. Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 1960; 70:68-78. Johansen K. Efficacy of metformin in the treatment of NIDDM. Meta-analysis. Diabetes Care. 1999; 22(1):33-7. Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia–reperfusion injury. Cardiovascular Research. 1999; 43:860–78. Jovanovic A, Alekseev AE, Terzic A. Intracellular diadenosine polyphosphates: A novel family of inhibitory ligands of the ATP-sensitive K+ channel. Biochemical Pharmacology. 1997; 54(2):219–25. Kannel WB, McGee DL. Diabetes and cardiovascular disease: the Farmingham Study. JAMA 1979; 241:2035–8. Karmazyn M, Moffat MP. Na+/H+ exchange and regulation of intracellular Ca2+. Cardiovasc Res. 1993; 27(11):2079-80. Kassab E, McFarlane SI, Sower JR. Vascular complications in diabetes and their prevention. Vasc Med. 2001; 6(4):249-55. Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans. 2003; 31(Pt 1):162-8. Kirpichnikov D, McFarlane SI, Sowers JR. Metformin: an update. Ann Intern Med. 2002; 137(1):25-33. Korge P, Honda HM, Weiss JN. Protection of cardiac mitochondria by diazoxide and protein kinase C: implications for ischemic preconditioning. Proc Natl Acad Sci U S A. 2002; 99(5):3312-7. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 2005; 65(3):385-411. Kristiansen SB, Henning O, Kharbanda RK, Nielsen-Kudsk JE, Schmidt MR, Redington AN, Nielsen TT, Bøtker HE. Remote preconditioning reduces ischemic injury in the explanted heart by a KATP channel-dependent mechanism. Am J Physiol Heart Circ Physiol. 2005; 288:H1252–6. Lalu MM, Wang W, Schulz R. Peroxynitrite in Myocardial Ischemia-Reperfusion Injury. Heart Failure Reviews. 2002; 7:359–69. Martinou JC, Green DR. Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol. 2001; 2:63– 7. Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001; 37(5):1344-50. Moens AL, Claeys MJ, Timmermans JP, Vrints CJ. Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. International Journal of Cardiology. 2005; 100:179–90. Nayler WG, Panagiotopoulos S, Elz JS, Daly MJ. Calcium-mediated damage during post-ischaemic reperfusion. J Mol Cell Cardiol. 1988; 20(Suppl 2):41-54. Nichols CG, Ripoll C, Lederer WJ. ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction. Circulation Research. 1991; 68(1):280–7. Nishino Y, Miura T, Miki T, Sakamoto J, Nakamura Y, Ikeda Y, Kobayashi H, Shimamoto K. Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovascular Research. 2004; 61:610– 9. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983; 305:147–8. Opie LH. The heart: physiology and metabolism. 2nd edition. Raven Press; 1991. Pasdois P, Beauvoit B, Costa ADT, Vinassa B, Tariosse L, Bonoron-Adèle S, Garlid KD, Santos PD. Sarcoplasmic ATP-sensitive potassium channel blocker HMR1098 protects the ischemic heart: Implication of calcium, complex I, reactive oxygen species and mitochondrial ATP-sensitive potassium channel. Journal of Molecular and Cellular Cardiology. 2007; 42:631–42. Powers SK, Murlasits Z, Wu M, Kavazis AN. Ischemia-Reperfusion–induced cardiac injury: A brief review. Med. Sci. Sports Exerc. 2007; 39(9):1529–36. Raza JA, Reinhart RA, Movahed A. Ischemic heart disease in women and the role of hormone therapy. International Journal of Cardiology. 2004; 96:7–19. Ruderman NB, Cacicedo JM, Itani S, Yagihashi N, Saha AK, Ye JM, Chen K, Zou M, Carling D, Boden G, Cohen RA, Keaney J, Kraegen EW, Ido Y. Malonyl-CoA and AMP-activated protein kinase (AMPK): possible links between insulin resistance in muscle and early endothelial cell damage in diabetes. Biochem Soc Trans. 2003; 31(Pt1): 202-6. Russell RR 3rd, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest. 2004; 114:495–503. Sambandam N, Lopaschuk GD. AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res. 2003; 42(3):238-56. Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest. 2004; 113(2):274-84. Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Progress in Biophysics and Molecular Biology. 2003; 81(2):133–76. Shi NQ, Ye B, Makielski JC. Function and distribution of the SUR isoforms and splice variants. Journal of Molecular and Cellular Cardiology. 2005; 39:51–60. Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, Funahashi T, Ouchi N, Walsh K. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med. 2005;11:1096–1103. Shyng SL, Cukras CA, Harwood J, Nichols CG. Structural determinants of PIP2 regulation of inward rectifier KATP channels. Journal of General Physiology. 2002; 116(5):599–608. Smith AJ, Partridge CJ, Asipu A, Mair LA, Hunter M, Sivaprasadarao A. Increased ATP-sensitive K+ channel expression during acute glucose deprivation. Biochem Biophys Res Commun. 2006; 348(3):1123-31. Solskov L, Løfgren B, Kristiansen SB, Jessen N, Pold R, Nielsen TT, Bøtker HE, Schmitz O, Lund S. Metformin induces cardioprotection against Ischaemia/Reperfusion injury in the rat heart 24 hours after administration. Basic Clin Pharmacol Toxicol. 2008 May 15.[Epub] Schulz M, Schmoldt A. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharmazie. 2003;58(7):447-74. Steenbergen C, Murphy E, Watts JA, London RE. Correlation between cytosolic free calcium contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circ Res. 1990; 66:135-46. Steenbergen C, Perlman ME, London RE, Murphy E. Mechanism of preconditioning: ionic alterations. Circ Res. 1993; 72:112-25. Stevens RJ, Coleman RL, Adler AI, Stratton IM, Matthews DR, Holman RR. Risk factors for myocardial infarction case fatality and stroke case fatality in type 2 diabetes: UKPDS 66. Diabetes Care. 2004; 27:201–7. Sukhodub A, Jovanović S, Du Q, Budas G, Clelland AK, Shen M, Sakamoto K, Tian R, Jovanović A. AMP-activated protein kinase mediates preconditioning in cardiomyocytes by regulating activity and trafficking of sarcolemmal ATP-sensitive K+ channels. J Cell Physiol. 2007; 210(1):224-36. Szewczyk A. The ATP-regulated K+ channel in mitochondria: Five years after its discovery. Acta Biochimica Polonica. 1996; 43(4):713–9. UK Prospective Diabetes Study Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998; 352(9131):854-65. Vanoye CG, MacGregor GG, Dong K, Tang L, Buschmann AS, Hall AE, Lu M, Giebisch G, Hebert SC. The carboxyl termini of KATP channels bind nucleotides. Journal of Biological Chemistry. 2002; 277(26):23260–70. Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovascular Research. 2004; 61:481– 97. Warltier DC, Zyvoloski MG, Gross GJ, Hardman HF, Brooks HL. Determination of experimental myocardial infarct size. J Pharmacol Methods. 1981; 6(3):199-210. Wojtaszewski JF, Jorgensen SB, Hellsten Y, Hardie DG, Richter EA. Glycogen- dependent effects of 5-aminoimidazole-4-carboxamide(AICA)-riboside on AMP- activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes. 2002; 51(2):284-92. Wojtaszewski JF, MacDonald C, Nielsen JN, Hellsten Y, Hardie DG, Kemp BE, Kiens B, Richter EA. Regulation of 5'AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab. 2003; 284(4):E813-22. Zhao ZQ, Nakamura M, Wang N-P, Velez DA, Hewan-Lowe KO, Guyton RA, Vinten-Johansen J. Dynamic progression of contractile and endothelial dysfunction and infarct extension in the late phase of reperfusion. J Surg Res. 2000; 94:133–44. Zhao ZQ, Velez DA, Wang N-P, Hewan-Lowe KO, Nakamura M, Guyton RA, Vinten-Johansen J. Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis. 2001; 6:279–90. Zhao ZQ, Vinten-Johansen J. Myocardial apoptosis and ischemic preconditioning. Cardiovascular Research. 2002; 55:438– 55. Zhao ZQ. Oxidative stress-elicited myocardial apoptosis during reperfusion. Current Opinion in Pharmacology. 2004; 4:159–65. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001; 108(8):1167-74. Zhuo ML, Huang Y, Liu DP, Liang CC. KATP channel: relation with cell metabolism and role in the cardiovascular system. The International Journal of Biochemistry & Cell Biology. 2005; 37:751–64. Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG 4th, Schlattner U, Neumann D, Brownlee M, Freeman MB, Goldman MH. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem. 2004; 279(42):43940-51. 行政院衛生署(2008)中華民國九十五年台灣地區死因統計結果摘要。行政院衛生署衛生統計資訊網。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37523 | - |
| dc.description.abstract | 中文摘要
背景:組織缺血後再灌流引起的損傷,在臨床上是很常見的,病人施行心血管手術或器官移植後、或於心肌梗塞、冠狀動脈阻塞及缺血性中風情況下,都會引起再灌流損傷,並影響病人的預後。許多臨床試驗都顯示,不管是第一型或第二型糖尿病,都容易發生缺血性心臟疾病及造成嚴重的後遺症,所以希望能研究抗糖尿病用藥對於心臟的保護作用。本篇實驗主要在研究metformin對於心臟冠狀動脈阻塞後再灌流所造成的損傷,是否具有保護的作用,並探討其可能的機轉。 方法:心臟取自成年雄性、重約250~350公克的Wistar品系大鼠,使用Langendorff離體心臟灌流模式,將灌流壓力固定於80mmHg,待平衡後結紮左前降支冠狀動脈,造成30分鐘的缺血,之後再灌流2小時,實驗分為不加藥組(CTL)及加藥組(MET),加藥組為再灌流的前十分鐘(即缺血20分鐘時)到再灌流兩小時過程中使用含有不同濃度metformin(0.1mg/L, 1mg/L, 10mg/L)的灌流溶液,再灌流結束後利用triphenyl tetrazolium chloride(TTC)染色結果,觀察心肌梗死區域占心臟缺血區域的比率,並利用西方點墨法及KATP channel blocker,更進一步探討metformin的作用機轉。 結果:從TTC染色的結果發現,心肌梗死區域占心臟缺血區域的比率,CTL組為59.3±4.2%(n=8),MET(1mg/L)組為30.6±2.6%(n=8),加藥組顯著地減少心肌梗死範圍。利用LDH釋放測定觀察細胞壞死,MET組的心肌細胞壞死現象明顯較CTL組少,而西方墨點法則用以觀察metformin相關蛋白質表現量,發現MET組AMPK的磷酸化有顯著增加,total AMPK量則無改變,而利用cytosol蛋白質測量caspase-3 activity也沒有變化。最後在平衡時即給予兩種不同的KATP channel blocker,glibenclamide(10μM)及5-HD(100μM),觀察心肌梗死區域占心臟缺血區域的比率,我們發現給予glibenclamide可以使metformin的保護作用消失,給予5-HD則無法影響metformin的保護作用。 結論:metformin對於心臟冠狀動脈阻塞後再灌流損傷具有保護作用,可能的機轉是透過AMPK活化及sarcolemmel KATP channels,減少心肌細胞壞死途徑,來降低心臟再灌流損傷引起的心肌梗死。 | zh_TW |
| dc.description.abstract | Abstract
Background: Reperfusion injury during the recovery phase of tissue ischemia is important in many clinical situations such as cardiac transplantation, myocardial infarction and stroke. It influences the outcome of the patients. Patients with type 1 or type 2 diabetes are at risk for developing cardiovascular diseases including ischemic heart disease, acute myocardial infarction and postinfarct complications. Therefore, it is very interesting to know whether anti-diabetic medicines are also protective against ischemic heart disease. The aim of the present study was to investigate the protective effects of metformin on coronary artery occlusion-reperfusion induced myocardial injury. Methods: We used mature male Wistar rat weighing 250~350g for the experiments. The hearts were subjected to Langendorff-perfusion with a coronary perfusion pressure of 80 mmHg. We occluded the left anterior descending artery for 30mins and then restored the coronary blood flow (reperfusion) for 2 hours. Animals were divided into control and metformin groups. In the metformin group, a solution containing metformin (0.1mg/L, 1mg/L, 10mg/L) was given from 10 minutes before reperfusion to the end of reperfusion. Triphenyl tetrazolium chloride (TTC) staining was used to show the area of infarction. Western blot and KATP channel blockers was also used in the present study. Results: In TTC staining, the percentage area of infarction was significantly decreased in the metformin group when compared with the control group (CTL=59.3±4.2%, n=8; MET=30.6±2.6 %, n=8). We also measured the LDH release from the effluent of the perfused heart. The total LDH value was significantly lower in the metformin group. Western blot analysis revealed that phospho-AMPK was increased in the metformin group. Caspase-3 activity, total AMPK expression showed no significant differences between the two groups. In addition, the effects of two different KATP channel blockers glibenclamide(10μM) and 5-HD(100μM) on the protective effect of metformin was investigated. We found that glibenclamide significantly inhibited the protective effect of metformin while 5-HD did not. Conclusion: Metformin significantly reduced the infarct size in myocardial ischemia/reperfusion injury. The smaller infarct size was attributed to a decrease of myocardial necrosis. The decreased reperfusion injury was related to phospho-AMPK and sarcolemmel KATP channels. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:31:14Z (GMT). No. of bitstreams: 1 ntu-97-R95443004-1.pdf: 2839781 bytes, checksum: 1fb8d5470e07359e419c0668eace223f (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書……………………………………….. i 誌謝…………………………………………………….. ii 縮寫表………………………………………………….. iii 中文摘要……………………………………………….. iv 英文摘要……………………………………………….. vi 第一章 緒論…………………………………………... 1 圖1-1:缺血再灌流細胞死亡情況…………………………………… 1 表1-1:中華民國九十五年十大死因................................................... 2 圖1-2:心肌缺血再灌流損傷機轉....................................................... 4 圖1-3:缺血再灌流造成細胞內鈣離子過載………………………… 5 圖1-4:缺血再灌流造成自由基大量產生…………………………… 6 圖1-5:自由基造成之後續反應……………………………………… 7 圖1-6:MPTP影響缺血再灌流心肌細胞死亡方式………………… 9 圖1-7:缺血再灌流引起之心血管傷害............................................... 10 圖1-8:KATP channel構造組成.............................................................. 11 圖1-9:KATP channel開啟,鉀離子由細胞內往細胞外移動............. 12 圖1-10:KATP channel對於心臟缺血再灌流之保護作用................... 14 表1-2:各種KCBs及KCOs的專一性及IC50……………………… 15 表1-3:糖尿病導致coronary artery disease(CAD)的因素.................. 17 圖1-11:口服降血糖藥物的分類與作用機轉………………………. 18 表1-4:各類口服降血糖藥物的優缺點……………………………… 19 圖1-12:Metformin的降血糖作用………………………………....... 21 圖1-13:AMPK的生理功能…………………………………………. 22 圖1-14:AMPK的三個次單元結構…………………………………. 24 圖1-15:AMP對AMPK的異位調控……………………………….. 24 表1-5:能活化AMPK的狀況、壓力與藥物……………………...... 25 圖1-16:Metformin活化AMPK的分子傳導途徑………………….. 25 研究動機與目的………………………………………………………. 26 第二章 實驗材料與方法…………………………….. 27 第三章 實驗結果…………………………………….. 41 圖3-1:左前降支冠狀動脈結紮後造成灌流流速的下降比率……... 47 圖3-2:心臟缺血區域占整顆心臟百分比………………………....... 47 圖3-3:Metformin可以減少心臟缺血再灌流的心肌梗死範圍……. 48 表3-1:Metformin對缺血再灌流過程最終心跳速率的影響………. 49 表3-2:Metformin對缺血再灌流過程最終心臟灌流流速的影響…. 49 圖3-4:Metformin可以減少Genomic DNA fragmentation…………. 50 圖3-5:Metformin可以減少心臟缺血再灌流的心肌細胞壞死……. 51 圖3-6:Metformin對缺血再灌流後心肌細胞caspase-3 activity無顯著影響………………………………………………………… 52 圖3-7:Metformin可以促使缺血再灌流後AMPK磷酸化增加…… 53 圖3-8:AMPK活化可以減少心肌梗死範圍……………………....... 54 圖3-9:Glibenclamide可以抑制Metformin減少心臟缺血區域心肌梗死範圍的作用……………………………………………... 55 圖3-10:5-HD無法抑制Metformin減少心臟缺血區域心肌梗死範圍的作用……………………………………………………. 56 第四章 討論…………………………………………... 57 圖4-1:心臟缺血後給予不同長度的再灌流時間心肌壞死及凋亡比例的變化……………………………………………………. 59 圖4-2:AMPK的下游目標及影響的代謝作用…………………...... 62 圖4-3:缺血再灌流時AMPK活化對於心肌細胞代謝的影響…..... 64 第五章 結論與展望………………………………….. 69 參考文獻……………………………………………….. 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | metformin | zh_TW |
| dc.subject | 心肌缺血再灌流損傷 | zh_TW |
| dc.subject | 心肌壞死 | zh_TW |
| dc.subject | AMPK | zh_TW |
| dc.subject | KATP channels | zh_TW |
| dc.subject | KATP channels | en |
| dc.subject | Myocardial ischemia/reperfusion injury | en |
| dc.subject | Myocardium necrosis | en |
| dc.subject | Metformin | en |
| dc.subject | AMPK | en |
| dc.title | Metformin對心肌缺血再灌流之保護作用 | zh_TW |
| dc.title | The protective effect of metformin on cardiac ischemia reperfusion. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林俊立(Jiunn-Lee Lin),蘇銘嘉(Ming-Jai Su),楊偉勛(Wei-Shiung Yang) | |
| dc.subject.keyword | 心肌缺血再灌流損傷,心肌壞死,metformin,AMPK,KATP channels, | zh_TW |
| dc.subject.keyword | Myocardial ischemia/reperfusion injury,Myocardium necrosis,Metformin,AMPK,KATP channels, | en |
| dc.relation.page | 83 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
