請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37515
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王明光(Ming-Kuang Wang) | |
dc.contributor.author | Yue-Ming Chen | en |
dc.contributor.author | 陳岳民 | zh_TW |
dc.date.accessioned | 2021-06-13T15:30:55Z | - |
dc.date.available | 2008-07-23 | |
dc.date.copyright | 2008-07-23 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-15 | |
dc.identifier.citation | 高橋英一。1974。植物營養。 153-172。
甘子能。1980。茶中的咖啡因。食品工業, 12, 19-23。 甘子能。1981a。茶中多元酚類成分。食品工業, 13, 10-18。 甘子能。1981b。茶中多元酚類成分 (之二):製茶過程中多元酚類的轉變。食品工業, 14, 10-16。 張如華。1983。利用HPLC分析茶中植物鹼含量變化之研究。台灣茶葉改良場年報, 51-56。 甘子能。1985。製茶原理的生化觀。食品工業, 17, 25-37。 吳振擇。1985。台灣茶葉分類。台灣茶葉研究彙報, 4, 155-158。 劉熙。1985。茶樹生理與種植。五洲出版社。 蔡永生和張如華。1986。茶葉可溶分萃取之研究。台灣省茶葉研究彙報, 3,117-123。 阮逸明。1987。包種茶水色形成與速溶茶萃取及抗結塊之研究。國立台灣大學食品科技研究所碩士論文。 方興漢。1987。pH 值對茶樹生理活動的影響。茶葉科學, 7, 15-22。 何念祖、孟賜福。1987。植物營養原理。上海科學技術出板社。 鍾仁賜。1989。茶樹對磷素之利用與耐鋁機制之探討。行政院國家科學委員會研究報告。 鍾仁賜。1991。酸鹼度與不同物種之鋁對茶樹生長及養分吸收之影響。行政院國家科學委員會研究報告。 陳玄。1992。氣象因子對茶樹生長之影響。土壤及農業氣象資源應用研討會專刊。台灣省茶葉改良場特刊, 4, 85-113。 黃丞宏。1994。各種茶葉除口臭效果之研究。國立台灣大學食品科技研究所碩士論文。 丁美幸。1994。磷,鋁處理為不同品系茶樹生長之影響。國立台灣大學農業化學研究所碩士論文。 陳英玲。1995。茶葉化學。茶葉技術推廣手冊, 85-90。 陳右人。1995。茶葉品種與育種介紹。茶葉技術推廣手冊, 7-10。 梁致遠。1995。茶樹免除鋁的營養生理障礙的機制。國立台灣大學農業化學研究所博士論文。 施兆鵬。1996。茶葉加工學。中國農業出板社。 蕭進治。1999。老葉除口臭之研究。國立台灣大學食品科技研究所碩士論文。 吳珊珊。2000。茶多酚之萃取及除口臭效果之研究。國立台灣大學食品科技研究所碩士論文。 洪陶玉。2000。紅茶除口臭成分之研究。國立台灣大學食品科技研究所博士論文。 葉美雲。2000。鋁與錳在茶樹生長與養分吸收上的效應。國立台灣大學農業化學研究所博士論文。 李敏雄和余瑞琳。1984。茶葉抗氧化劑之萃取及其不同食用油中之抗氧化活性。中國農業化學會誌, 22, 226-231。 吳振擇、葉素卿和鄭觀星。1975。不同製茶種類對兒茶素含量的影響。中國農業化學會誌, 13, 159-168。 區少梅、蔡永生和張如華。1988。包種茶酚類化合物分析方法之比較與評估。台灣茶業研究彙報, 43-61。 潘根生、M. Tsuji、小西茂毅。1991。根尖細胞各胞器的分離及其鋁的分布。浙江農業大學學報, 17, 253-258。 Alok, B. and F. Xu. 2001. Impact of peroxidase addition on the sorption-desorption behavior of phenolic contaminants in surface soils. Environmental Science and Technology, 35, 3163-3168. Alva, A.K., D.G. Edwards., C.J. Asher., F.P.C. Blamey. 1986. Relationships between root length of soybean and calculated activities of aluminum monomers in nutrient solution. Soil Science Society of America Journal, 50, 959-962. Amberges, A. 1973. The role of manganese in the metabolism of plants. Agrochimica, 17, 69-83. Aniol, A. 1983. Aluminum uptake by root of two winter varieties of different tolerance to aluminum. Biochemie und Physiologie der Pflanzen, 178, 11-20. Anh, Y.J., T. Kawamura., M. Kim., T. Yamamoto., and T. Mitsuoka. 1991. Tea polyphenols: Selective growth inhibitors of Clostridium spp. Agriculture of Biology Chemistry, 55, 1425-1426. Antonio, M. R. and J. N. Pedro. 2003. Carbon-13 CP-MAS nuclear magnetic resonance studies of teas. Solid State Nuclear Magnetic Resonance, 23, 119-135. Baligar, V.C., R.J. Wright., T.B. Kinride., C.D. Foy., and J.H. Elgin. 1987. Aluminum effects on growth, mineral uptake and efficiency ratios in red cultivars. Agronomy journal, 79, 1038-1043. Bailey, R.G., and H.E. Nursten. 1994. A liquid chromatography-mass spectrometry study of black tea liquor using the plasmaspray. Journal of the Science of Food and Agriculture, 66, 203-208. Bengtsson, B., A. Hakan., P. Jensen., and D. Berggren. 1988. Influence of aluminum on phosphate and calcium uptake in beech grown in nutrient solution and soil solution. Physiologia Plantarum, 74, 299-305. Berkowitz, J.E., P. Coggon., and G.W. Sanderson. 1971. Formation of epitheaflavic acid and its transformation to thearubigins during tea fermentation. Phytochemistry, 10, 2271-2278. Bertsch, P. M. and D. R. Parker. 1996. Aqueous polynuclear aluminum species. In the Environmental Chemistry of Aluminum. G. Sposito. (Ed.). Lewis Publishers, New York. pp 117-168. Bhatia, I. S. and M. R. Ullah. 1968. Polyphenol of tea. IV. Qualitative and quantitative study of the polyphenols of different organs and some cultivated varieties of tea plant. Journal of the Science of Food and Agriculture, 19, 535-546. Blamey, F. P. C., D. C. Edmeades and D. M. Wheeler. 1990. Role of root cation-exchange capacity in differential aluminuim tolerance of lotus spcies. Journal of Plant Nutrition, 13, 729-744. Bokuchava, M. A. and N. I. Skohelva. 1969. The chemistry and biochemistry of tea and tea manufacture. Advance in Food Research, 17, 215-292. Bollag, J.M. 1992. Decontaminating soil with enzymes. Environmental Science and Technology, 26, 1876-1881. Brening, R.H., G.F. Sulser, and L.S. Fosdick. 1939. The determination of halitosis by use of the osmoscope and cryscopic method. Journal of Dental Research, 18, 127-132. Busher, P., N. Koedam, and D.V. Speybroeck. 1990. Cation exchange properties and adaptation to soil acidity in bryophytes. New Phytologist, 115, 177-186. Cabrera, C., R. Gimenez, and M. Carmen Lopez. 2003. Determination of tea components with antioxidant activity. Journal of Agricultural and Food Chemistry, 51, 4427-4435. Cao, G., E. Sofic., and R. Prior. 1996. Antioxidants capacity of tea and common vegetables. Journal of Agricultural and Food Chemistry, 44, 3426-3431. Clakson, D.T. 1966. Effect of aluminium on the uptake and metabolism of phosphorus by barley seedlings. Plant Physiology, 41, 165-172. Clarkson, D.T. 1966. Aluminium tolerance in species within the genus Agrostis. Journal of Ecology, 54, 167-178. Chenery, E.A. 1995. A preliminary study of aluminum and tea bush. Plant and Soil, 6, 174-200. Chenery, E.M. and K.R. Sporne. 1976. A note on the evolutionary status of aluminuim accumulation among dicotyledons. New Phytologist, 76, 551-554. Cheynier, V., C. Osse, and J. Rigaud. 1988. Oxidation of grape juice phenolic compounds in model solutions. Journal of Food Science, 53, 1729-1732. Chen, Y.M., M.K. Wang, and P.M. Huang. 2006. Catechin transformation as influenced by aluminum. Journal of Agricultural and Food Chemistry, 54, 212-218. Chen, Y.M., M.K. Wang, S.Y. Zhuang, and P.N. Chiang. 2006. Chemical and physical properties of rhizosphere and bulk soils of three tea plants cultivated in Ultisols. Geoderma, 136, 378-387. Chung, R.S. 1992. Influence of aluminium, magnesium and silicon on the growth and nutrient uptake of the tea plant. Journal of Chinese Agricultural, 30, 291-306. Dreosti, I.E., M.J. Wargovich., and C.S. Yang. 1997. Inhibition of carcinogenesis by tea: The evidence from experimental studies. Critic Review of Food Science Nutrition, 37, 761-770. Foy, C.D., G.R. Burens, J.C. Brown, and A.L. Fleming. 1965. Differential aluminuim tolerance of two wheat varieties associated with plant induced pH changes around their roots. Soil Science Society of America, 29, 64-67. Foy, C.D. 1974. Effect of aluminum on plant growth. Plant and Soil, 49, 601-642. Foy, C.D. and E.H. Lee. 1987. Differential aluminuim tolerances of two barley cultivars related to organic acids in their roots. Journal of Plant Nutrition, 10, 1089-1101. Forest, C.I. and E.M. Bendall. 1969. The distribution polyphenols in the tea plant. Biochemical Journal, 113, 741-755. Fung, K.F., Z.Q. Zhang, J.W.C. Wong, and M.H. Wong. 1999. Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion. Environmental Pollution, 104, 197-205. Germida, J.J., Casida, J. and E,L. 1980. Myceloid growth of Arthrobacter globiformis and other Arthrobacter specie. Journal of Bacteriology, 144, 1152-1158. Greenland, D.J., 1965. Interaction between clays and organic compounds in soils, I. Mechanisms of interaction between clays and defined organic compounds. Soils and Fertilizers, 28, 415-425. Hara, Y. 1984. Actions of tea polyphenols in oral hygiene. Antioxidant Food Supplements in Humun Health, 28, 429-443. Hatcher, P.G., I.A. Breger., and M.A. Mattingly. 1980. Structural characteristics of fulvic acids from continental shelf sediments. Nature, 285, 560-562. Haung, A. 1984. Molecular aspects of aluminium toxicity. CRC Critical Reviews in Plant Science, 1, 345-373. Horst, W.J., A. Wagner, and H. Marschner. 1983. Effect of aluminuim on root growth, cell division rate and mineral element contents in roots of Vigna unguiculata genotypes. Z. Pfanzephysiol, 109, 95-103. Horst, W.J., C.J. Asher, J. Cakmak, P. Szulkiewicz, and A.H. Wissemeier. 1992. Short-term respones of soybean roots to aluminuim. Journal of Plant Physiology, 140, 174-178. Horst, W.J. 1995. The role of the apoplast in aluminium toxicity and resistance of higher plants: A review. Z. Pflanzenernahr. Bodenkunde, 158, 419-428. Hsu, P.H., 1973. Effect of sulphate on the crystallization of aluminum hydroxide from aging hydroxyl-aluminum solutions. In: Nicolas, J. (Ed.), On Studies of Bauxite and Aluminum Oxides-Hydroxides. France, pp. 613-620. Hsu, P.H. 1988. Mechanisms of gibbsite crystallization from partially neutralized aluminum chloride solutions. Clays and Clay Minerals, 36, 25-30 Hsu, P.H. 1989. Aluminum hydroxides and oxyhydroxides. Chapter 7. In: J. B. Dixon and S. B. Weed (Eds.). Minerals in Soil Environments. 2nd edition, Published by Soil Sci. Soc. Am., Madison, WI. pp 331-378. Hsu, P.H., and T.F. Bates. 1964. Formation of X-ray amorphous and crystalline hydroxides. Mineralogical Magazine, 33, 749-768. Hue, N.V., G.R. Craddock, and F. Adams. 1996. Effect of organic acids on aluminuim toxicity in subsoils. Soil Science Society of America, 50, 28-34. Huang, P.M. 1975. Retention of arsenic by hydroxy-aluminum on surfaces of micaceous mineral colloids. Soil Science Society of America, 39, 271-274. Huang, P.M. 1988. Ionic factors affecting aluminum transformation and the impact on soil and environment sciences. Advance in Soil Science, 8, 71-78. Huang, P.M. 2004. Soil mineral-organic matter-microorganism interactions: Fundamentals and impact. Advances in Agronomy, 82, 391-472. Huang, P.M., T.S.C. Wang., M.K. Wang., M.H. Wu., and N.W. Hsu. 1977. Retention of phenolic acids on noncrystalline hydroxyl-aluminum and-iron compounds and clay minerals of soils. Soil Science, 123, 213-219. Huang, J.W., D.L. Grunes., and L.V. Kochian. 1992. Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars. Plant Physiology, 98, 230-237. Huang, P. M., M.K. Wang, N. Kämpf, and D.G. Schulze. 2002. Aluminum hydroxides. In: J. B. Dixon and D. G. Schulze (Eds.). Soil Mineralogy with Environmental Applications. Soil Sci. Soc. Am., Madison, WI. pp. 261-289. Jan, F., and S. Pettersson. 1993. Effect of low aluminium levels on growth and nutrient relations in three rice cultivars with different tolerances to aluminium. Journal of Plant Nutrition, 16, 359-372. Jokic, A., A.I. Frenkel, M.A. Vairavarmurthy, and P.M. Huang. 2001. Birnessite catalysis of the Millard reaction: Its significance in natural humification. Geophys Resarch Letters, 28, 3899-3902. Jokic, A., M.C. Wang, C. Liu, A.I. Frenkel, and P.M. Huang. 2004. Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for hunification in nature:the role of δ-MnO2. Organic Geochemistry, 35, 742-747. Jorgensen, S.S. 1976. Dissolution kinetics of silicate minerals in aqueous catechol solutions. Soil Science, 27, 183-195. Kada, T., K. Kaneko., S. Matsuzaki., T. Matsuzaki., and Y. Hara. 1985. Detection and chemical identification of natural bio-antimutagens. Mutation Research, 150, 127-132. Kidd, P.S., M. Llugany., C. Poschenrieder., B. Gunse., and J. Barcelo. 2001. The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L.). Journal of Experimental Botany, 52, 1339-1352. Kim, Y.J., J.E. Chung, M. Kurisawa, and S. Kobayashi. 2003. Regioselective synthesis and structures of (+)-catechin-aldehyde polycondensates. Macromolecular Chemistry and Physics, 204, 1863-1868. Konishi, S., S. Miyamoto, and T. Taki. 1985. Stimilatory effect of aluminuim on tea plants growth under low and high phosphorus supply. Soil Science and Plant Nutrition, 31, 361-368. Korsanov, A.L., and M.I. Brovchenko. 1950. Tannins of various organs of the tea plant. Chemical Abstracts, 46, 2631-2647. Kung, K.H., and M.B. Mcbride. 1988. Electron transfer process between hydroquinone and iron oxides. Clays and Clay Mineral, 36, 303-309. Kwong, K.F., N. Kee, and P.M. Huang. 1977. Influence of citric acid on the hydrolytic reactions of aluminum. Soil Science Society of America Journal, 41, 692-697. Kwong, K.F., N. Kee, and P.M. Huang. 1978. Sorption of phosphate by hydrolytic reaction products of aluminum. Nature, 271, 336-338. Kwong, K.F., N. Kee, and P.M. Huang. 1981. Comparison of the influence of tannic acid selected low-molecular-weight organic acids on precipitation products of aluminum. Geoderma, 20, 179-193. Liang, J.Y. 1995. Avoidance mechanisms of nutritional-physiological interference of aluminum in the tea plant (Camellia sinensis), Ph.D. Thesis, National Taiwan University, Taipei, Taiwan, pp. 27-45. Lim, C.H., and M.L. Jackson. 1982. Dissolution of total elemental analysis. In: A. L. Page et al. (Eds.). Method of Soil Analysis. Part 2. Agron. Monogr. 9. ASA and SSSA, Madison, WI, pp. 1-12. Lin, J.K., Y.C. Laing, and S.Y. Lin-Shiau. 1999. Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochemical Pharmacology, 58, 911-915. Lohuis, M. P. 1960. Effect if magnesium and calcium supply on the uptake of manganese by various crop plants. Plant and Soil, 12, 339-376. Luciuk, G.M., and P.M. Huang. 1974. Effect of mono silicic acid on hydrolytic reactions of aluminum. Soil Science Society of America Journal, 38, 235-244. Lunder, T. 1989. Tannins of green and black tea:Nutritional value, physiological properties and determination. Farm Tijdschr Belgique, 66, 34-42. Maas, E.V. 1969. Calcium uptake by excised maize roots and interactions with alkali cation. Plant Physiology, 44, 985-989. Malkanthi, D.R., M. Moritsugu., and K. Yokoyama. 1995. Effect of low pH and Al on absorption and translocation of some essential nutrients in excised barley roots. Soil Science and Plant Nutrition, 41, 253-262. Martini, J.A. and R.G. Mutters. 1985. Effect of lime rates on nutrients availability, mobility phosphorus. Soil Science, 139, 219-226. Matsumoto, H., E. Hirasawa, H. Torikai, and E. Takahashi. 1976. Localization of absorbed aluminuim in pea root and its binding to nucleic acids. Plant and Cell Physiology, 17, 127-137. Manley, E.P. and L.J. Evans. 1986. Dissolution of feldspars by low-molecular-weight aliphatic and aromatic acids. Soil Science, 141, 106-112. Memon, A.R., M. Chino., and M. Yatazawa. 1981. Microdistribution of aluminum and manganese in the tea leaf tissue as revealed by X-ray microanalyzer. Communications in Soil Science and Plant Analysis, 12, 441-452. Mcbride, M.B. 1987. Adsorption and oxidation of phenolic compounds by iron and manganese oxides. Soil Science Society of America Journal, 51, 1466-1472. Mckenzie, R.M. 1971. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineralogical Magazine, 38, 493-502. Meher, T., A.K. Basu, and S. Ghatak. 2005. Physicochemical characteristics of alumina gel in hydroxyhydrogel and normal form. Ceramics International, 31, 831-838. Miyasaka, S.C., J.G. Buta., R.K. Howell., and C.D. Foy. 1991. Mechanism of aluminium tolerance in snapbeans: root exudation of citric acid. Plant Physiology, 96, 737-743. Morimura, S., E. Takahashi and H. Matsumoto. 1978. Association of aluminium with nuclei and inhibition of cell division in onion roots. Zeitschrift Pflanzenphysiologie, 88, 395-401. Munsell Color Charts. 1992 (Revised edition). Macbeth, Division of Kollmorgen Instruments Corp, Newburgh, New York. Nagata, T., M. Hayatsu, and N. Kosuge. 1992. Identification of aluminium forms in tea leaves by 27Al NMR. Phytochemical, 31, 1215-1218. Ojima, K., and K. Ohira. 1983. Characterization of aluminum and manganese. Plant Cell of Physiology, 24, 789-797. Olson, B.M., R.B. Mckercher, and J.J. Germida. 1984. Microbial population in trifluralin-treated soil. Plant and Soil, 76, 379-387. Owuor, P.O., and D.K.A. Cheruiyot. 1989. Effect of nitrogen fertilizer on the aluminuim contents of mature tea leaf and extractable aluminuim in the soil. Plant and Soil, 119, 342-345. Parker, D.R., T.B. Kinraide., and L.W. Zelazny. 1988. Aluminum speciation and phytotoxicity in dilute hydroxyl-aluminum solutions. Soil Science Society of America Journal, 52, 438-444. Park, J.W., J. Dec., J.E. Kim., and J.M. Bollag. 1999. Effect of humic constituents on the transformation of chlorinated phenols and anilines in the presence of oxidoreductive enzymes or birnessite. Environmental Science and Technology, 33, 2028-2034. Paul, O.M., T. Wagatusma., S. Ishikawa., and K. Tawaraya. 2001. The plasma membrane strength of the root-tip cells and root phenolic compounds are correlated with Al tolerance in several common woody plants. Soil Science of Plant Nutrition, 47, 359-375. Plant, W. 1956. The effects of molybdenum deficiency and mineral toxicities on crop in acid soils. The Journal of Horticultural Science, 17, 163-176. Rengel, Z., and D.L. Robinson. 1989. Aluminum and plant age effects on absorption of cations in the Donnan free space ryegrass roots. Plant and Soil, 116, 223-227. Rengel, Z., and D.C. Elliott. 1992. Mechanism of aluminum inhibition of net Ca2+ uptake by protoplasts. Plant Physiology, 98, 632-638. Roberts, E.A.H. 1962. Economic importance of flavonoids substances:tea fermentation. In “Chemistry of Flavonoid Compounds”, ed. Geissman, T.A. Pergamon Press, Oxford, 468-512. Roberts, E.A.H. 1963. The phenolic substances of manufactured tea. X. The creaming down of tea liquors. Joural of Science of Food and Agriculture, 14, 700-705. Roper, J.C., J.M. Sarkar, J. Dec, and J.M. Bollag. 1995. Enhanced enzymatic removal of chlorophenols in the presence of co-substrates. Water Research, 29, 2720-2724. Roser, P.T., P. Charlotte, L. Barbara, and B. Juan. 2005. Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosa Environmental and Experimental Botany, 54, 231-238. Ryan, P.R., J.M. Ditomaso, and L.V. Kochian. 1993. Aluminuim toxicity in roots:An investigation of spatial sensitivity and the role of the root cap. Journal of Experimental Botany, 259, 437-446. Ryan, P.R., E. Delhaize, and P.J. Randall. 1995. Characteriszation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta, 196, 103-110. Sanderson, G.W. 1972. The chemistry of tea and tea manufacturing. In Recent Advances in Phytochemistry. Vol. 5, V. C. Runeckles and T. C. Tso (Editors). Academic Press, New York. Sanderson, G.W., H. Co., and J.G. Gonzalez. 1971. Biochemistry of tea fermentation:The role of carotenes in black tea aroma formation. Journal of Food Science, 36, 231-236. Schnitzer, M. 1977. Recent findings on the characterization of humic substances extracted from soils from widely differing climatic zones. Soil Organic Matter Studies II. IAEA Bull., Vienna, pp. 77-101. Schnitzer, M. 1978. Recent findings on the characterization of humic substances extracted from soil from widely different climatic zones. pp. 117-130. In: IAEA-SM-211/7, Soil Organic Matter Studies. Vol. II. IAEA, Vienna. Schnitzer, M. and S.U. Khan. 1972. Humic substances in the environment. Marcel Dekker, New York. Schnitzer, M. and M. Levesque. 1979. Electron spin resonance as a guide to the degree of humification of peats. Soil Science, 127, 140-145. Schnitzer, M. and K. Ghosh. 1982. Characteristics of water-soluble fulvic acid-copper and fulvic acid-iron complexes. Soil Science, 134, 354-363. Schnitzer, M., M. Barr, and R. Hortenstein. 1984. Kinetics and characteristics of humic acids produced from simple phenols. Soil Biology and Biochemistry, 16, 371-376. Schwertmann, U. and R.M. Taylor. 1981. The significance of oxides for the surface properties and usefulness of synthetic oxides as a models for their study. International Social Science Bulletin, 60, 62-66. Selvendran, R.E., and S. Selvendran. 1972. Changes in the polysaccharides of the tea plant during postprune growth. Phytochemistry, 11, 3167-3172. Senesi, N. and M. Schnitzer. 1977. Effect of pH, reaction time, chemical reduction and irradiation on ESR spectra of fulvic acids. Soil Science, 123, 224-234. Shahidi, F., P.K. Janitha., and P.D. Wanasunndara. 1992. Phenolic antioxidants. Critic Review of Food Science Nutrition, 32, 67-103. Shindo, H., and P.M. Huang. 1982. Role of Mn(IV) oxide in abiotic formation of humic substances in the environment. Nature, 298, 363-365. Shindo, H. and P.M. Huang. 1984. Significance of Mn(IV) oxide in abiotic formation of organic nitrogen complexes in natural environments. Nature, 308, 57-58. Sivasubramaniam, S., and O. Talibudeen. 1971. Effect of aluminuim on growth of tea (Camellia sinensis) and its uptake of potassium and phosphorus. Journal of the Science of Food and Agriculture, 22, 325-329. Sivasubramaniam, S., and O. Talibudeen. 1972. Effect of aluminuim on growth of tea (Camellia sinensis) and its uptake of potassium and phosphorus. Tea Quarterly, 43, 4-13. Skoog, D.A., F.J. Holler, and T.A. Nieman. 1999. Principles of instrumental analysis (fifth edition). Thomson Learning, U.S.A, pp. 412-413. Somer, I.I., and J.W. Shive. 1942. The iron-manganese relation in plant metabolism. Plant physiology, 17, 582-602. Solecka, D., A.M. Boudet., and A. Kacperska. 1999. Phenylpropanoid and anthocyanin changes in low temperature treated winter oilseed rape leaves. Plant Physiology and Biochemistry, 37, 491-496. Stevenson, F. J. 1994. Humic Chemistry. John Wiley and Sons, New York. Swift, R.S. 1985. Fractionation of soil humic substances. In Humic Substances in Soil, Sediment, and Water. G.R. Aiken et al. (eds.). John Wily and Sons, New York, pp. 387-408. Suhayda, C.G. and A. Haug. 1986. Organic acids reduce aluminuim toxicity in maize root membrances. Physiologia Plantarum, 68, 189-195. Syers, J. K., R.F. Harris, and D.E. Armstrong. 1973. Phosphate chemistry in lake sediments. Journal of Environmental Quality, 2, 1-14. Park, J.W., J. Dec, J.E. Kim, and J.M. Bollag. 1999. Effect of humic constituents on the transformation of chlorinated phenols and anilines in the presence of oxidoreductive enzymes or birnessite. Environmental Science and Technology, 33, 2028-2034. Paul, O.M., T. Wagatusma., S. Ishikawa., and K. Tawaraya. 2001. The plasma membrane strength of the root-tip cells and root phenolic compounds are correlated with Al tolerance in several common woody plants. Soil Science of Plant Nutrition, 47, 359-375. Tanaka, A. and S. Yoshida. 1970. Nutritional disorders of the rice plant in Asis. Internal Rice Research, 10, 201-212. Taylor, G.J., and C.D. Foy. 1985. Mechanisms of aluminuim tolerance in Triticum aestivum L. (wheat). I. Differential pH induced by winter cultivars in nutrient solution. American Journal of Botany, 72, 695-701. Tiessen, H., J.R. Bettany, and J.W.B. Stewart. 1981. An improved method for the determination of carbon in soils and soil extracts by dry combustion. Communications in Soil Science and Plant Analysis, 12, 211-218. Toda, K.I., and A. Mashingaidze. 1997. Influence of withering, including leaf handing, on the manufacturing and quality of black teas-a review. Food Chemistry, 60, 573-580. Tomlins, K.I., and A. Mashingaidze. 1997. Influence of withering, including leaf handing, on the manufacturing and quality of black teas-a review. Food Chemistry, 60, 573-580. Turner, R.C. 1969. Three forms of aluminum in aqueous systems determined by 8-quinolinolate extraction methods. Canadian Journal of Chemistry, 47, 2521-2527. Turner, R.C., and G.J. Ross. 1970. Conditions in solution during the formation of gibbsite in dilute aluminum salt solution. 4. Effect of Cl- concentration and temperature and a proposed mechanism for gibbsite formation. Canadian Journal of Chemistry, 48, 723-729. Wada, K., and M.E. Harward. 1974. Amorphous clay constituents of soils. Advances in Agronomy, 26, 211-250. Wagatsuma, T., M. Kaneko., and Y. Hayasaka. 1987. Destruction process of plant root cells by aluminum. Soil Science and Plant Nutrition, 33, 161-175. Wang, M.C., and P.M. Huang. 1991. Nontronite catalysis in polycondensation of pyrogallal and glycine. Soil Science Society of America, 55, 1156-1161. Wang, M.C., and P.M. Huang. 2000. Ring cleavage and oxidative transformation of pyrogallol catalyzed by Mn, Fe, Al, and Si oxides. Soil Science, 165, 934-942. Wang, M.C., and P.M. Huang. 2005. Cleavage of 14C-labeled glycine and its polycondensation with pyrogall as catalyzed by birnersite. Geoderma, 124, 415-426. Wang, T.S.C., K.L. Yeh, S.Y. Cheng, and T.K. Yang. 1971. Behavior of soil phenolic acids. Soil Science Society of America Journal, 32, 113-120. Wang, T.S.C., M.C. Wang, Y.L. Ferng, and P.M. Huang. 1983. Catalytic synthesis of humic substances by natural clays, silts and soils. Soil Science, 135, 350-360. Wang, T.S.C., P.M. Huang, C.H. Chou, and J.H. Chen. 1986. The role of soil minerals in the abiotic polymerization of phenolic compounds and formation of humic substances. In: P. M. Huang and M. Schnitzer (Eds.). Interactions of Soil Minerals with Natural Organic Microbes. Soil Science Society of America Journal, Madison, WI, pp. 251-281. Wang, S. L., M.K. Wang, and Y.M. Tzou. 2003. Effect of temperature on formation and transformation of hydrolytic aluminum in aqueous solutions. Coll. Surf. A: Physicochem. Engenharia Aspect, 231, 143-157. Wertz, J.E., and J.R. Bolton. 1972. Electron Spin Resonance Elementary Theory and Practical Applications. McGraw-Hill, Inc., New York, pp. 497-501. Whitehead, D.C. 1964. Identification of p-hydroxy-benzoic, vanillic, p-coumaric and ferulic acids in soils. Nature, 202, 417-418. White, R.E. 1976. Studies on mineral ion absorption by plant. III. The interaction of aluminum, phosphate and pH on the growth of Medicago sativa. Plant and Soil, 46, 195-208. Wickremasinghe, R.L. 1978. Tea. Advances in Food Research, 24, 229-231. Wissemeier, A.H. and W.J. Horst. 1992. Effect of light intensity on manganese toxicity symptoms and callose formation in cowpea. Plant Soil, 143, 283-286. Wu, C.D., and G. Wei. 2002. Tea as a functional food for oral health. Nutrition, 18, 443-444. Vance, G.E., F.J. Stevenson, and F.J. Sikora. 1996. Environmental chemistry of aluminum-organic complexes. In: Sposito, G. (Ed.), The Environmental Chemistry of Aluminum. Lewis Publications, New York, pp. 169-220.Xie, Z. M., Z. H. Ye, and M. H. Wong. 2001. Distribution characteristics of fluoride and aluminium in soil profiles of an abandoned tea plantation and their uptake by six woody species. Environment International, 26, 341-346. Vuataz, H., H. Brandenberger., and R.H. Egli. 1959. Plant phenols. I. Separation of the tea leaf polyphenols by cellulose column chromatography. Journal of Chromatography, 2, 173-176. Xie, Z.M. Z.H. Ye., and M.H. Wong. 2001 Distribution characteristics of fluoride and aluminum in soil profiles of an abandoned tea plantation and their uptake by six woody species. Environmental Interation, 26, 341-346. Yamada, H., and T. Hattori. 1980. Investigation of the relationship between aluminum and fluorine in plants. III. Absorption of fluoro-aluminum complex by tea plants. Journal of Science of Soil Manure, 51, 179-182. Yang, C.S., and Z.Y. Wang. 1993. Tea and cancer. Journal of the National Cancer Institute, 85, 1038-1049. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37515 | - |
dc.description.abstract | 茶樹為典型的鋁累積作物,而多酚類化合物 (兒茶素類) 為其體內主要之生物分子組成。然而,鋁和兒茶素之間的交互作用目前仍然是不清楚。本篇研究之目的為研究鋁對於兒茶素之轉化作用之影響。反應液在OH/Al莫耳比為 2.5 (pH 5.5)和3.0 (pH 7.0)下,配製成不同比例之Al/catechin 莫耳比分別為0, 0.2, 0.4, 0.6, 0.8, 1.0,之後老化7天和30天。沉澱物利用化學全分析、X射線繞射分析、穿透式電子顯微鏡分析 ( TEM )、電子自旋光譜分析 ( ESR )、橫偏極化魔角13C 核磁共振光譜分析 ( CPMAS )和傅立葉轉化紅外線吸收光譜儀分析 ( FT-IR )。沉澱物的量會隨著Al/catechin 莫耳比以及老化時間增加而增加。沉澱物中的Al/catechin 莫耳比會隋著一開始配製之Al/catechin 莫耳比增加而增加,並且非常接近起使溶液之Al/catechin莫耳比。化學分析和光譜分析都顯示出Al會跟catechin 鍵結並且會形成1:1型錯合物。結晶性的catechin與鋁反應之後會變成無定形之物質。沉澱物 13C NMR光譜分析結果顯示出鋁會與catechin發生錯合反應並且改變了catechin之核磁共振化學位移。FT-IR 光譜分析之結果也指出catechin與鋁錯合反應後,幾個官能基之吸收峰會改變。電子自旋光譜結果顯示出有一個均勻對稱的分隔線,此結果指出有自由基之存在,並顯示為semiquinones,此為土壤有機質之腐質酸存在的主要自由基。 | zh_TW |
dc.description.abstract | Polyphenols (catechins) is a vital biomolecule in tea plants (Camellia sinensis), which is well known as a typical Al accumulator. However, the interaction between Al and catechin remains obscured. The objective of the present study was to investigate the effect of Al on transformation of (+)-catechin. Solutions with OH/Al molar ratios of 2.5 (pH 5.5) and 3.0 (pH 7.0) prepared at Al/catechin molar ratios (R) of 0, 0.2, 0.4, 0.6, 0.8 and 1.0 were aged for 7 and 30 days, respectively. The precipitates were collected and examined by wet chemistry, X-ray diffraction (XRD), transmission electron microscopy (TEM), electron spin resonance (ESR), cross polarization magic angle (CPMAS) 13C nuclear magnetic resonance (13C NMR) analyses and Fourier transformation infrared absorption spectrometry (FT-IR). The weight of the precipitates increased with increasing Al/catechin molar ratios and with prolonged aging. The molar ratios of Al/catechin in the precipitates increased with increasing the initial Al/catechin molar ratios, and were close to the initial solution Al/catechin molar ratios. The chemical analysis and spectroscopic studies indicated that Al was bonded with catechin forming a 1:1 type complex. The reaction of crystalline catechin with Al resulted in the formation of X-ray noncrystalline precipitates. The solid-state CPMAS 13C NMR spectra of the precipitates show the change in chemical shifts of catechin as a result of catechin complexating with Al. The FT-IR spectra of the Al-catechin precipitates also show the loss of absorption bands of several functional groups compared with catechin. The FT-IR data substantiates this reasoning. The ESR spectra of the precipitates show a single symmetrical line devoid of any fine splitting, indicating presence of free radicals of semiquinones which are commonly present in humified materials. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:30:55Z (GMT). No. of bitstreams: 1 ntu-97-D92623001-1.pdf: 1287762 bytes, checksum: 5ab8d202401e90efb2f2db3472927a56 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書--------------------------------------- 謝誌--------------------------------------------------- 中文摘要-----------------------------------------------I 英文摘要-----------------------------------------------II 目錄---------------------------------------------------IV 第一章 緒論--------------------------------------------1 第一節、 緒言---------------------------------------1 第二節、 文獻回顧-----------------------------------7 第二章 鋁影響兒茶素之轉化作用--------------------------25 第一節、 前言---------------------------------------25 第二節、 材料與方法---------------------------------27 第三節、 結果與討論---------------------------------31 一、 老化樣品之顏色描述和混濁度------------31 二、 懸浮液之pH---------------------------34 三、 沉澱物老化後之重量--------------------36 四、 沉澱物中鋁和有機碳之含量--------------38 五、 沉澱物中Al/catechin 的莫耳比-----------41 六、 沉澱物之X-ray繞射和穿透式電子顯微鏡--44 七、 沉澱物之電子自旋光譜------------------48 八、 沉澱物之13C CPMAS NMR---------------50 九、 沉澱物之FT-IR-------------------------53 第四節、 結論---------------------------------------55 第三章 兒茶素之聚合作用受鐵、鋁和錳氧化物催化之影響----56 第一節、 前言---------------------------------------57 第二節、 材料與方法---------------------------------58 第三節、 結果與討論---------------------------------63 一、 微生物活性之檢驗----------------------64 二、 氧化物的結晶性和比表面積--------------65 三、 氧化物-兒茶素系統下二氧化碳之釋放量---66 四、 懸浮液最終pH 以及上清液之吸光度-------67 五、 氧化物-兒茶素系統下所形成之腐質聚合物--69 六、 所溶解出之總可溶性鐵、鋁和錳-----------71 七、 腐質聚合物之電子自旋共振光譜-----------73 八、 腐質聚合物之傅立葉轉換紅外線光譜-------74 第四節、 結論----------------------------------------77 第四章 兒茶素影響氫氧化鋁之沉澱作用----------------------78 第一節、 前言-----------------------------------------79 第二節、 材料與方法-----------------------------------79 第三節、 結果與討論-----------------------------------83 一、 懸浮液之pH 值---------------------------83 二、 鋁分布百分比----------------------------84 三、 沉澱鋁之分布百分比----------------------86 四、 鋁沉澱物之比表面積----------------------87 五、 固相之X-ray射線繞射分析----------------88 六、 固相之FT-IR之分析----------------------90表面型態--------------------------------93 七、 熱分析----------------------------------95 第四節、 結論-----------------------------------------96 第五章 茶樹中鋁誘發酚類物質之變化------------------------97 第一節、 前言-----------------------------------------97 第二節、 材料與方法-----------------------------------99 第三節、 結果與討論----------------------------------104 一、不同濃度鋁處理對茶樹生長之影響----------104 二、不同鋁濃度處理對各種營養元素吸收之影響--108 三、不同鋁濃度處理對於總酚之影響------------120 四、不同鋁濃度處理對於各別兒茶素之影響------121 五、不同鋁濃度處理下各元素對於酚類之相關性--123 第四節、 結論----------------------------------------125 第六章 總結---------------------------------------------126 第七章 參考文獻-----------------------------------------129 | |
dc.language.iso | zh-TW | |
dc.title | 鋁與兒茶素在茶樹生長上所扮演之角色 | zh_TW |
dc.title | The Role of Aluminum and Catechin on the Growth of Tea Plants | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林木連,鍾仁賜,賴喜美,官文惠,王尚禮,李敏雄,陳建德 | |
dc.subject.keyword | 鋁,兒茶素,錯合作用,共沉澱作用, | zh_TW |
dc.subject.keyword | Aluminum,(+)-catechin,complexating,coprecipitation,polymerization., | en |
dc.relation.page | 162 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-15 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。