Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37488
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張鎮華(Gerard-Jennhwa Chang)
dc.contributor.authorBo-Jr Lien
dc.contributor.author李博智zh_TW
dc.date.accessioned2021-06-13T15:29:54Z-
dc.date.available2010-07-17
dc.date.copyright2008-07-17
dc.date.issued2008
dc.date.submitted2008-07-16
dc.identifier.citationBibliography
[1] R. Alter and C. Wang, “Uniquely intersectable graphs,” Discrete Math. 18
(1977), 217-226.
[2] D. J. Bergstrand and L. M. Friedler “Domination graphs of tournaments and
other digraphs,” Ars Combin. 74 (2005), 89-96.
[3] N. G. de Bruijn and P. Erd˝os, “The non-existence of certain finite projective
planes,” Canad. J. Math. 51 (1948), 1277-1279.
[4] S. Bylka and J. Komar, “Intersection properties of line graphs,” Discrete Math.
164 (1997), 33-45.
[5] C. Cable, K. F. Jones, J. R. Lundgren and S. Seager, “Niche graphs,” Discrete
Appl. Math. 23 (1989), 231-241.
[6] P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University
Press, 1994, 102-104.
[7] H. Cho, F. Doherty and J. R. Lundgren, “Domination graphs of regular tournaments
II,” Cong. Numer. 130 (1998), 95-111.
[8] H. H. Cho and S.-R. Kim, “The competition number of a graph having exactly
one hole,” Discrete Math. 303 (2005), 32-41.
[9] H. Cho, S-R. Kim and J. R. Lundgren, “Domination graphs of regular tournaments,”
Discrete Math. 252 (2002), 57-71.
[10] J. E. Cohen, Interval graphs and food webs: a finding and a problem, RAND
Corporation Document 17696-PR, Santa Monica, CA, 1968.
[11] D. G. Corneil, Y. Perl and L. K. Stewart “A linear recognition algorithm for
cographs,” SIAM J. Comput. 14 (1985), 926-934.
[12] M. B. Cozzens and F. S. Roberts, “T-colorings of graphs and the channel assignment
problem,” Congr. Numer. 25 (1982), 191-208.
[13] G. A. Dirac, “On rigid circuit graphs,” Abh. Math. Sem. Univ. Hamburg, 25
(1961), 71-76.
[14] P. Erd˝os, A. Goodman and L. Posa, “The representation of graphs by set interactions,”
Canad. J. Math. 18 (1961), 106-112.
[15] P. Erd˝os, F. Harary and W. T. Tutte, “On the dimension of a graph,” Mathematika
12 (1965), 118-122.
[16] C. M. Fiduccia, E. R. Scheinerman, Ann Trenk and J. S. Zito “Dot product
representations of graphs,” Discrete Math. 181 (1998), 113-138.
[17] P. C. Fishburn and W. V. Gehrlein, “Niche numbers,” J. Graph Theory 16
(1992), 131-139.
[18] D. C. Fisher, D. Guichard, J. R. Lundgren, S. K. Merz and K. B. Reid, “Domination
graphs with nontrivial components,” Graph and Combin. 17 (2001), 227-236.
[19] D. C. Fisher, J. R. Lundgren, S. K. Merz and K. B. Reid, “Domination graphs
of tournaments with digraphs,” Cong. Numer. 108 (1995), 97-107.
[20] D. C. Fisher, J. R. Lundgren, S. K. Merz and K. B. Reid, “The domination and
competition graphs of a tournament,” J. Graph Theory 29 (1998), 103-110.
[21] D. C. Fisher, J. R. Lundgren, S. K. Merz and K. B. Reid, “Connected domination
graphs of tournaments,” J. Combin. Math. Combin. Comput. 31 (1999), 169-176.
[22] D. C. Fisher, J. R. Lundgren, S. K. Merz and K. B. Reid, “Domination graphs
of tournaments with isolated vertices,” Ars Combin. 66 (2003), 299-311.
[23] M. Goldberg, “The group of the quadratic residue tournament,” Canad. Math.
Bull. 13 (1970), 51-54.
[24] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
Inc. 1980.
[25] D. A. Gregory, S. McGuinness and W. Wallis, “Clique partitions of the cocktail
party graph,” Discrete Math. 59 (1986), 267-273.
[26] W. K. Hale, Frequency assignment: theory and application, Proc. IEEE 68
(1980), 1497-1514.
[27] F. Harary, S.-R. Kim and F. S. Roberts, “Extremal competition numbers as a
generalization of Turan’s theorem,” J. Ramanujan Math. Soc. 5 (1990), 33-43.
[28] G. Jimenez. Domination Graphs of Near-regular Tournaments and the
Domination-compliance Graph, Ph.D Thesis, University of Colorado at Denver,
1998.
[29] S.-R. Kim, The competition number and its variants, in: Quo Vadis, Graph Theory?
J. Gimbel, J. W. Kennedy and L. V. Quintas (Eds.), Annals Discrete Math.,
55 (1993), 313-326.
[30] S.-R. Kim, “Graphs with one hole and competition number one,” J. Korean
Math. Soc. 42 (2005), 1251-1264.
[31] S.-R. Kim and F. S. Roberts, “Competition numbers of graphs with a small
number of triangles,” Discrete Appl. Math. 78 (1997), 153-162.
[32] B.-J. Li and G. J. Chang, “Clique coverings and partitions of line graphs,” Discrete
Math. 308 (2008), 2075-2079.
[33] B.-J. Li and G. J. Chang, “The competition number of a graph with exactly h
holes, all of which are independent,” submitted
[34] C. K. Lim and Y. H. Peng, “Uniquely pseudointersectable graphs,” Ars Combin.
32 (1991), 3-11.
[35] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University
Press, 1992, 188.
[36] L. Lov´asz, M. Saks and A. Schrijver, “Orthogonal representation and connectivity
of graphs,” Linear Algebra Appl. 114 (1989), 439-454.
[37] J. R. Lundgren, “Food webs, competition graphs, competition-common enemy
graphs, and Niche graphs,” in: F. S. Roberts (Ed.), Applications of Combinatorics
and Graph Theory to the Biological and Social Sciences IMH Volumes in
Mathematics and its Application, vol. 17, Springer, New York, 1989, 221-243.
[38] J. R. Lundgren, S. K. Merz and C. W. Rasmussen, “Chromatic numbers of
competition graphs,” Linear Algebra Appl. 217 (1995), 225-239.
[39] N. V. R. Mahadev and T.-M.Wang, “On uniquely intersectable graphs,” Discrete
Math. 207 (1999), 149-159.
[40] E. Marczewski, “Sur deux propri´et´es des d’ensembles,” Fund. Math. 33 (1945),
303-307.
[41] S. McGuinness and R. Rees, “On the number of distinct minimal clique partitions
and clique covers of a line graph,” Discrete Math. 83 (1990), 49-62.
[42] T. A. Mckee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM
Monographs on Discrete Mathematics and Applications, 1999.
[43] P. McKenna, M. Morton and J. Sneddon, “New domination conditions for tournaments,”
Australas. J. Combin. 26 (2002), 171-182.
[44] J. W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, 1968.
[45] R. J. Opsut, “On the computation of the competition number of a graph,” SIAM
J. Alg. Discr. Math. 3 (1982), 420-428.
[46] R. J. Opsut and F. S. Roberts, “On the fleet maintenance, mobile radio frequency,”
task assignment and traffic phasing problem, in: G. Chartrand, Y. Alavi,
D. L. Goldsmith, L. Lesniak-Foster, D. R. Lick (Eds.), The Theory and Applications
of Graphs, Wiley, New York, 1981, 479-492.
[47] J. Orlin, “Contentment in graph theory: covering graphs with cliques,” Indag.
Math. 39 (1977), 406-424.
[48] T. D. Parsons and Tomaˇz Pisanski “Vector representations of graphs,” Discrete
Math. 78 (1989), 143-154.
[49] N. J. Pullman and D. de Caen, “Clique coverings of graphs I. Clique partitions
of regular graphs,” Utilitas Math. 19 (1981), 117-205.
[50] F. S. Roberts, “Food webs, competition graphs, and the boxicity of ecological
phase space,” in: Y. Alavi and D. Lick (Eds.), Theory and Applications of Graphs,
Springer, New York, 1978, 477-490.
[51] D. Scott, “The competition-common enemy graph of a digraph,” Discrete Appl.
Math. 17 (1987), 269-280.
[52] C. E. Shannon, “The zero capacity of a noisy channel,” Information Theory,
IEEE Transactions on 2 (1956), 8-19.
[53] M. Sonntag and H. M. Teichert, “Notes Competition hypergraphs,” Discrete
Applied Math. 143 (2004), 324-329.
[54] Tsuchiya, “On intersection graphs with respect to antichains (II),” Utilities Math.
37 (1996), 29-44.
[55] D. B. West, Introduction to Graph Theory, Second Edition, Prectice Hall, Upper
Saddle River, NJ, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37488-
dc.description.abstract本篇論文,我們主要是探討與研究相交圖理論的三個分支,其中包含圖的點團覆蓋(分割),圖的點積表示法及競爭圖。
首先在第二章中,我們研究關於線圖的點團覆蓋(分割)。對於由McGuinness和Rees [41]所獲得關於線圖的點團覆蓋(分割)之結果,我們提供一致性說法證明之。我們使用此證明技巧對於De Brujin-Erdős定理給一個簡易的證明。
接著在第三章與第四章中,我們研究關於圖的點積表示法問題。在1998年,Fiduccia等人[16]首先提出圖的點積表示法問題。他們証明ρ(Kn, n)=n和猜測對於所有具有n個頂點的圖G都滿足ρ(G)≦ 。在第三章,我們針對這個猜測給予部份結果。其次,我們定義緊密相關的概念,即是圖的(嚴格)強點積表示法。在第四章中,我們學習關於圖的(嚴格)強點積表示法的概念。
最後在第五章至第八章中,我們研究關於競爭圖的問題。Roberts [50]證明弦圖的競爭數最多是一。Cho和Kim[8]證明恰有一個洞的圖的競爭數最多是二。任給二個正整數h和k滿足k≦h+1,Kim [30]找到一個恰有h個洞的連通圖使得滿足其競爭數為k。緊接著他提出一個問題:所有恰有h個洞的圖的競爭數是否皆小於或等於h+1?當h≦1時,這個答案是正確。在第五章中,我們證明所有恰有h個獨立洞的圖的競爭數皆小於或等於h+1。接著在第六章中,我們證明當h=2時,此問題的答案是正確。
在第七章中,我們回顧關於比賽圖的控制圖的己知結果。其次,探討並刻劃當一個具有``零到全'性質的比賽圖的性質。我們也研究比賽圖的k-控制圖的著色問題。最後,在第八章中我們研究比賽圖的競爭圖與競爭超越圖的著色問題。
zh_TW
dc.description.abstractThis dissertation focuses on the study of three topics in intersection graph theory:
clique coverings (partitions) of graphs, dot product representations of graphs and competition graphs.
We first study clique coverings (partitions) of line graphs in Chapter 2. This chapter gives alternative proofs, using a unified approach, for the results on the clique covering (partition) numbers of line graphs obtained by
McGuinness and Rees [41].
We also employ the proof techniques to give an alternative proof for the De Brujin-ErdH{o}s Theorem.
We next study the dot product representation problem, which was introduced by Fiduccia et al. [16] in 1998, in Chapters 3 and 4. They showed that $
ho(K_{n,n})=n$ and conjectured that for all graphs G of n vertices,$
ho(G)leqfrac{n}{2}$. Chapter 3 gives partial solutions to this conjecture.
We then define the closely related notions of (strict) strong dot product representation. Chapter 4 studies (strict) strong dot product representations.
Finally, we investigate the competition graphs in Chapters 5 through 8.
Roberts [50] proved that the competition number of
a chordal graph is at most one. Cho and Kim [8] established that the competition number of a graph with exactly one hole is at most two. Given two positive integers h and k with $kleq h+1$, Kim [30] constructed a connected graph G with exactly h holes and $kappa(G)=k$.
Then he asked the question: Is h+1 the maximum competition number of a graph with exactly $h$ holes? The answer is yes for $hleq 1$. We first show that the competition number of a graph with exactly h holes, all of which are independent, is at most h+1 in Chapter 5. Next, Chapter 6 proves the answer of this question is yes for h=2.
In Chapter 7, we review some results on domination graphs of tournaments. We characterize a tournament that satisfies the empty-to-complete property. We also study coloring on
k-domination graphs of tournaments. Chapter 8 studies coloring on competition graphs and competition hypergraphs of tournaments.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:29:54Z (GMT). No. of bitstreams: 1
ntu-97-D92221003-1.pdf: 712098 bytes, checksum: 1674d2747869462a28cc0fa4dc017f0e (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents1 Introduction 1
1.1 Intersection graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basic definitions and notation . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Clique Coverings and Partitions of Line Graphs 12
2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Key lemma and the De Bruijn-Erd˝os Theorem . . . . . . . . . . . . . 15
2.3 Alternative proof for Theorem 2.2 . . . . . . . . . . . . . . . . . . . . 18
2.4 Alternative proof for Theorem 2.3 . . . . . . . . . . . . . . . . . . . . 19
2.5 Conclusion remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Dot Product Representations of Graphs 22
3.1 Definitions and basic properties . . . . . . . . . . . . . . . . . . . . . 22
3.2 Some results to the conjecture that (G) n
2 . . . . . . . . . . . . . . 24
3.3 Cartesian product of graphs . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Necessary condition for 2-dot product graphs . . . . . . . . . . . . . . 30
3.5 Hypercubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Strong Dot Product Representations of Graphs 32
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Bounds for 0(G) and 00(G) . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Complete r-partite graphs . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Extreme graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Bound for paths and cycles . . . . . . . . . . . . . . . . . . . . . . . . 40
5 The Competition Number of A Graph with Exactly h Holes, All of
Which are Independent 42
5.1 Independent holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Graphs with exactly h holes, all of which are independent . . . . . . . 46
5.3 The sufficient condition for (G) h . . . . . . . . . . . . . . . . . . 50
6 The Competition Number of A Graph with Exactly Two Holes 52
6.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Graphs with exactly two holes . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7 k-Domination Graphs of Tournaments 59
7.1 Previous results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.1.1 Domination graphs of tournaments . . . . . . . . . . . . . . . 60
7.1.2 Domination graphs of regular tournaments . . . . . . . . . . . 61
7.1.3 Domination graphs of near regular tournaments . . . . . . . . 62
7.2 k-domination graphs of tournaments . . . . . . . . . . . . . . . . . . 62
7.3 Coloring on k-domination graphs of tournaments . . . . . . . . . . . 65
7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8 Coloring on Competition Hypergraphs of Tournaments 68
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.2 Competition graphs of tournaments . . . . . . . . . . . . . . . . . . . 69
8.3 Competition hypergraphs of tournaments . . . . . . . . . . . . . . . . 71
8.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Bibliography 74
dc.language.isoen
dc.subject點團覆蓋(分割)zh_TW
dc.subject獨立洞zh_TW
dc.subject競爭圖zh_TW
dc.subject點積表示法zh_TW
dc.subjectclique coverings (partitions)en
dc.subjectindependent holeen
dc.subjectcompetition graphsen
dc.subjectdot product representationsen
dc.title相交圖相關問題之研究zh_TW
dc.titleTopics in Intersection Graphsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee李國偉(Ko-Wei Lih),葉鴻國(Hong-Gwa Yeh),朱緒鼎(Xuding Zhu),顏經和(Jing-Ho Yan),黃華民(Hua-Min Huang),林強(Chiang Lin)
dc.subject.keyword點團覆蓋(分割),點積表示法,競爭圖,獨立洞,zh_TW
dc.subject.keywordclique coverings (partitions),dot product representations,competition graphs,independent hole,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2008-07-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
695.41 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved