請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37488完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張鎮華(Gerard-Jennhwa Chang) | |
| dc.contributor.author | Bo-Jr Li | en |
| dc.contributor.author | 李博智 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:29:54Z | - |
| dc.date.available | 2010-07-17 | |
| dc.date.copyright | 2008-07-17 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-16 | |
| dc.identifier.citation | Bibliography
[1] R. Alter and C. Wang, “Uniquely intersectable graphs,” Discrete Math. 18 (1977), 217-226. [2] D. J. Bergstrand and L. M. Friedler “Domination graphs of tournaments and other digraphs,” Ars Combin. 74 (2005), 89-96. [3] N. G. de Bruijn and P. Erd˝os, “The non-existence of certain finite projective planes,” Canad. J. Math. 51 (1948), 1277-1279. [4] S. Bylka and J. Komar, “Intersection properties of line graphs,” Discrete Math. 164 (1997), 33-45. [5] C. Cable, K. F. Jones, J. R. Lundgren and S. Seager, “Niche graphs,” Discrete Appl. Math. 23 (1989), 231-241. [6] P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994, 102-104. [7] H. Cho, F. Doherty and J. R. Lundgren, “Domination graphs of regular tournaments II,” Cong. Numer. 130 (1998), 95-111. [8] H. H. Cho and S.-R. Kim, “The competition number of a graph having exactly one hole,” Discrete Math. 303 (2005), 32-41. [9] H. Cho, S-R. Kim and J. R. Lundgren, “Domination graphs of regular tournaments,” Discrete Math. 252 (2002), 57-71. [10] J. E. Cohen, Interval graphs and food webs: a finding and a problem, RAND Corporation Document 17696-PR, Santa Monica, CA, 1968. [11] D. G. Corneil, Y. Perl and L. K. Stewart “A linear recognition algorithm for cographs,” SIAM J. Comput. 14 (1985), 926-934. [12] M. B. Cozzens and F. S. Roberts, “T-colorings of graphs and the channel assignment problem,” Congr. Numer. 25 (1982), 191-208. [13] G. A. Dirac, “On rigid circuit graphs,” Abh. Math. Sem. Univ. Hamburg, 25 (1961), 71-76. [14] P. Erd˝os, A. Goodman and L. Posa, “The representation of graphs by set interactions,” Canad. J. Math. 18 (1961), 106-112. [15] P. Erd˝os, F. Harary and W. T. Tutte, “On the dimension of a graph,” Mathematika 12 (1965), 118-122. [16] C. M. Fiduccia, E. R. Scheinerman, Ann Trenk and J. S. Zito “Dot product representations of graphs,” Discrete Math. 181 (1998), 113-138. [17] P. C. Fishburn and W. V. Gehrlein, “Niche numbers,” J. Graph Theory 16 (1992), 131-139. [18] D. C. Fisher, D. Guichard, J. R. Lundgren, S. K. Merz and K. B. Reid, “Domination graphs with nontrivial components,” Graph and Combin. 17 (2001), 227-236. [19] D. C. Fisher, J. R. Lundgren, S. K. Merz and K. B. Reid, “Domination graphs of tournaments with digraphs,” Cong. Numer. 108 (1995), 97-107. [20] D. C. Fisher, J. R. Lundgren, S. K. Merz and K. B. Reid, “The domination and competition graphs of a tournament,” J. Graph Theory 29 (1998), 103-110. [21] D. C. Fisher, J. R. Lundgren, S. K. Merz and K. B. Reid, “Connected domination graphs of tournaments,” J. Combin. Math. Combin. Comput. 31 (1999), 169-176. [22] D. C. Fisher, J. R. Lundgren, S. K. Merz and K. B. Reid, “Domination graphs of tournaments with isolated vertices,” Ars Combin. 66 (2003), 299-311. [23] M. Goldberg, “The group of the quadratic residue tournament,” Canad. Math. Bull. 13 (1970), 51-54. [24] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc. 1980. [25] D. A. Gregory, S. McGuinness and W. Wallis, “Clique partitions of the cocktail party graph,” Discrete Math. 59 (1986), 267-273. [26] W. K. Hale, Frequency assignment: theory and application, Proc. IEEE 68 (1980), 1497-1514. [27] F. Harary, S.-R. Kim and F. S. Roberts, “Extremal competition numbers as a generalization of Turan’s theorem,” J. Ramanujan Math. Soc. 5 (1990), 33-43. [28] G. Jimenez. Domination Graphs of Near-regular Tournaments and the Domination-compliance Graph, Ph.D Thesis, University of Colorado at Denver, 1998. [29] S.-R. Kim, The competition number and its variants, in: Quo Vadis, Graph Theory? J. Gimbel, J. W. Kennedy and L. V. Quintas (Eds.), Annals Discrete Math., 55 (1993), 313-326. [30] S.-R. Kim, “Graphs with one hole and competition number one,” J. Korean Math. Soc. 42 (2005), 1251-1264. [31] S.-R. Kim and F. S. Roberts, “Competition numbers of graphs with a small number of triangles,” Discrete Appl. Math. 78 (1997), 153-162. [32] B.-J. Li and G. J. Chang, “Clique coverings and partitions of line graphs,” Discrete Math. 308 (2008), 2075-2079. [33] B.-J. Li and G. J. Chang, “The competition number of a graph with exactly h holes, all of which are independent,” submitted [34] C. K. Lim and Y. H. Peng, “Uniquely pseudointersectable graphs,” Ars Combin. 32 (1991), 3-11. [35] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, 1992, 188. [36] L. Lov´asz, M. Saks and A. Schrijver, “Orthogonal representation and connectivity of graphs,” Linear Algebra Appl. 114 (1989), 439-454. [37] J. R. Lundgren, “Food webs, competition graphs, competition-common enemy graphs, and Niche graphs,” in: F. S. Roberts (Ed.), Applications of Combinatorics and Graph Theory to the Biological and Social Sciences IMH Volumes in Mathematics and its Application, vol. 17, Springer, New York, 1989, 221-243. [38] J. R. Lundgren, S. K. Merz and C. W. Rasmussen, “Chromatic numbers of competition graphs,” Linear Algebra Appl. 217 (1995), 225-239. [39] N. V. R. Mahadev and T.-M.Wang, “On uniquely intersectable graphs,” Discrete Math. 207 (1999), 149-159. [40] E. Marczewski, “Sur deux propri´et´es des d’ensembles,” Fund. Math. 33 (1945), 303-307. [41] S. McGuinness and R. Rees, “On the number of distinct minimal clique partitions and clique covers of a line graph,” Discrete Math. 83 (1990), 49-62. [42] T. A. Mckee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM Monographs on Discrete Mathematics and Applications, 1999. [43] P. McKenna, M. Morton and J. Sneddon, “New domination conditions for tournaments,” Australas. J. Combin. 26 (2002), 171-182. [44] J. W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, 1968. [45] R. J. Opsut, “On the computation of the competition number of a graph,” SIAM J. Alg. Discr. Math. 3 (1982), 420-428. [46] R. J. Opsut and F. S. Roberts, “On the fleet maintenance, mobile radio frequency,” task assignment and traffic phasing problem, in: G. Chartrand, Y. Alavi, D. L. Goldsmith, L. Lesniak-Foster, D. R. Lick (Eds.), The Theory and Applications of Graphs, Wiley, New York, 1981, 479-492. [47] J. Orlin, “Contentment in graph theory: covering graphs with cliques,” Indag. Math. 39 (1977), 406-424. [48] T. D. Parsons and Tomaˇz Pisanski “Vector representations of graphs,” Discrete Math. 78 (1989), 143-154. [49] N. J. Pullman and D. de Caen, “Clique coverings of graphs I. Clique partitions of regular graphs,” Utilitas Math. 19 (1981), 117-205. [50] F. S. Roberts, “Food webs, competition graphs, and the boxicity of ecological phase space,” in: Y. Alavi and D. Lick (Eds.), Theory and Applications of Graphs, Springer, New York, 1978, 477-490. [51] D. Scott, “The competition-common enemy graph of a digraph,” Discrete Appl. Math. 17 (1987), 269-280. [52] C. E. Shannon, “The zero capacity of a noisy channel,” Information Theory, IEEE Transactions on 2 (1956), 8-19. [53] M. Sonntag and H. M. Teichert, “Notes Competition hypergraphs,” Discrete Applied Math. 143 (2004), 324-329. [54] Tsuchiya, “On intersection graphs with respect to antichains (II),” Utilities Math. 37 (1996), 29-44. [55] D. B. West, Introduction to Graph Theory, Second Edition, Prectice Hall, Upper Saddle River, NJ, 2001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37488 | - |
| dc.description.abstract | 本篇論文,我們主要是探討與研究相交圖理論的三個分支,其中包含圖的點團覆蓋(分割),圖的點積表示法及競爭圖。
首先在第二章中,我們研究關於線圖的點團覆蓋(分割)。對於由McGuinness和Rees [41]所獲得關於線圖的點團覆蓋(分割)之結果,我們提供一致性說法證明之。我們使用此證明技巧對於De Brujin-Erdős定理給一個簡易的證明。 接著在第三章與第四章中,我們研究關於圖的點積表示法問題。在1998年,Fiduccia等人[16]首先提出圖的點積表示法問題。他們証明ρ(Kn, n)=n和猜測對於所有具有n個頂點的圖G都滿足ρ(G)≦ 。在第三章,我們針對這個猜測給予部份結果。其次,我們定義緊密相關的概念,即是圖的(嚴格)強點積表示法。在第四章中,我們學習關於圖的(嚴格)強點積表示法的概念。 最後在第五章至第八章中,我們研究關於競爭圖的問題。Roberts [50]證明弦圖的競爭數最多是一。Cho和Kim[8]證明恰有一個洞的圖的競爭數最多是二。任給二個正整數h和k滿足k≦h+1,Kim [30]找到一個恰有h個洞的連通圖使得滿足其競爭數為k。緊接著他提出一個問題:所有恰有h個洞的圖的競爭數是否皆小於或等於h+1?當h≦1時,這個答案是正確。在第五章中,我們證明所有恰有h個獨立洞的圖的競爭數皆小於或等於h+1。接著在第六章中,我們證明當h=2時,此問題的答案是正確。 在第七章中,我們回顧關於比賽圖的控制圖的己知結果。其次,探討並刻劃當一個具有``零到全'性質的比賽圖的性質。我們也研究比賽圖的k-控制圖的著色問題。最後,在第八章中我們研究比賽圖的競爭圖與競爭超越圖的著色問題。 | zh_TW |
| dc.description.abstract | This dissertation focuses on the study of three topics in intersection graph theory:
clique coverings (partitions) of graphs, dot product representations of graphs and competition graphs. We first study clique coverings (partitions) of line graphs in Chapter 2. This chapter gives alternative proofs, using a unified approach, for the results on the clique covering (partition) numbers of line graphs obtained by McGuinness and Rees [41]. We also employ the proof techniques to give an alternative proof for the De Brujin-ErdH{o}s Theorem. We next study the dot product representation problem, which was introduced by Fiduccia et al. [16] in 1998, in Chapters 3 and 4. They showed that $ ho(K_{n,n})=n$ and conjectured that for all graphs G of n vertices,$ ho(G)leqfrac{n}{2}$. Chapter 3 gives partial solutions to this conjecture. We then define the closely related notions of (strict) strong dot product representation. Chapter 4 studies (strict) strong dot product representations. Finally, we investigate the competition graphs in Chapters 5 through 8. Roberts [50] proved that the competition number of a chordal graph is at most one. Cho and Kim [8] established that the competition number of a graph with exactly one hole is at most two. Given two positive integers h and k with $kleq h+1$, Kim [30] constructed a connected graph G with exactly h holes and $kappa(G)=k$. Then he asked the question: Is h+1 the maximum competition number of a graph with exactly $h$ holes? The answer is yes for $hleq 1$. We first show that the competition number of a graph with exactly h holes, all of which are independent, is at most h+1 in Chapter 5. Next, Chapter 6 proves the answer of this question is yes for h=2. In Chapter 7, we review some results on domination graphs of tournaments. We characterize a tournament that satisfies the empty-to-complete property. We also study coloring on k-domination graphs of tournaments. Chapter 8 studies coloring on competition graphs and competition hypergraphs of tournaments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:29:54Z (GMT). No. of bitstreams: 1 ntu-97-D92221003-1.pdf: 712098 bytes, checksum: 1674d2747869462a28cc0fa4dc017f0e (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Intersection graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Basic definitions and notation . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Clique Coverings and Partitions of Line Graphs 12 2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Key lemma and the De Bruijn-Erd˝os Theorem . . . . . . . . . . . . . 15 2.3 Alternative proof for Theorem 2.2 . . . . . . . . . . . . . . . . . . . . 18 2.4 Alternative proof for Theorem 2.3 . . . . . . . . . . . . . . . . . . . . 19 2.5 Conclusion remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Dot Product Representations of Graphs 22 3.1 Definitions and basic properties . . . . . . . . . . . . . . . . . . . . . 22 3.2 Some results to the conjecture that (G) n 2 . . . . . . . . . . . . . . 24 3.3 Cartesian product of graphs . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 Necessary condition for 2-dot product graphs . . . . . . . . . . . . . . 30 3.5 Hypercubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 Strong Dot Product Representations of Graphs 32 4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 Bounds for 0(G) and 00(G) . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Complete r-partite graphs . . . . . . . . . . . . . . . . . . . . . . . . 36 4.4 Extreme graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.5 Bound for paths and cycles . . . . . . . . . . . . . . . . . . . . . . . . 40 5 The Competition Number of A Graph with Exactly h Holes, All of Which are Independent 42 5.1 Independent holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 Graphs with exactly h holes, all of which are independent . . . . . . . 46 5.3 The sufficient condition for (G) h . . . . . . . . . . . . . . . . . . 50 6 The Competition Number of A Graph with Exactly Two Holes 52 6.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.2 Graphs with exactly two holes . . . . . . . . . . . . . . . . . . . . . . 56 6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7 k-Domination Graphs of Tournaments 59 7.1 Previous results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.1.1 Domination graphs of tournaments . . . . . . . . . . . . . . . 60 7.1.2 Domination graphs of regular tournaments . . . . . . . . . . . 61 7.1.3 Domination graphs of near regular tournaments . . . . . . . . 62 7.2 k-domination graphs of tournaments . . . . . . . . . . . . . . . . . . 62 7.3 Coloring on k-domination graphs of tournaments . . . . . . . . . . . 65 7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8 Coloring on Competition Hypergraphs of Tournaments 68 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.2 Competition graphs of tournaments . . . . . . . . . . . . . . . . . . . 69 8.3 Competition hypergraphs of tournaments . . . . . . . . . . . . . . . . 71 8.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Bibliography 74 | |
| dc.language.iso | en | |
| dc.subject | 點團覆蓋(分割) | zh_TW |
| dc.subject | 獨立洞 | zh_TW |
| dc.subject | 競爭圖 | zh_TW |
| dc.subject | 點積表示法 | zh_TW |
| dc.subject | clique coverings (partitions) | en |
| dc.subject | independent hole | en |
| dc.subject | competition graphs | en |
| dc.subject | dot product representations | en |
| dc.title | 相交圖相關問題之研究 | zh_TW |
| dc.title | Topics in Intersection Graphs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李國偉(Ko-Wei Lih),葉鴻國(Hong-Gwa Yeh),朱緒鼎(Xuding Zhu),顏經和(Jing-Ho Yan),黃華民(Hua-Min Huang),林強(Chiang Lin) | |
| dc.subject.keyword | 點團覆蓋(分割),點積表示法,競爭圖,獨立洞, | zh_TW |
| dc.subject.keyword | clique coverings (partitions),dot product representations,competition graphs,independent hole, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 695.41 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
