Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37441
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳宜良(I-Liang Chern)
dc.contributor.authorHao-Chih Leeen
dc.contributor.author李浩志zh_TW
dc.date.accessioned2021-06-13T15:28:16Z-
dc.date.available2009-07-26
dc.date.copyright2008-07-26
dc.date.issued2008
dc.date.submitted2008-07-16
dc.identifier.citation[1] R. P. Araujo, D. L. S. McElwain, A history of the study of solid tumour growth: The contribution
of mathematical modelling ,66 (2004), Bull. Math. Biol., 10391091
[2] A. C. Burton, rate of growth of solid tumors as a problem of diffusion,30 (1966), Growth., Soc.,
157-176
[3] H. Byrne and M. A. J. Chaplain,Growth of nonnecrotic tumors in the presence and absence of
inhibitors, Math. Biosci. 130 (1995), 151-181.
[4] H.M. Byrne, The role of mathematics in solid tumour growth, 35 (1999), Math. Today, 5989.
[5] V. Cristini,J.S. Lowengrub, Q. Nie, Nonlinear simulation of tumor growth, J. Math. Biol., 46
(2003), 191-224.
[6] A. Friedman, A hierarchy of cancer models and their mathematical challenges, Discrete and con-
tinuous dynamical system, Vol. 4, series B, (2004), 147-159.
[7] A. Friedman, F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary prob-
lems: An application to a model of tumor growth, 353 (2001), Trans. Amer. Math., Soc., 1587-1634
[8] H.P. Greenspan, Models for the growth of a solid tumor by diffusion,52 (1972), Stud. Appl.
Math.,317-340.
[9] S. Gottlieb, C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Math. Comput. 67
(1998), 73 -85.
[10] C. S. Hogea, B. T. Murray, J. A. sethian Simulation complex tumor dynamics from avascular to
vascular growth using a general level-set method, J. Math. Biol., 53 (2006), 86-134.
[11] R. J. LeVeque, Z. Li, The Immersed Interface Method for Elliptic Equations with Discontinuous
Coefficients and Singular Sources, SIAM J. Numer. Anal, 31 (1994), 1019-1044
[12] P. Macklin, J. Lowengrub Evolving interfaces via gradients of geometry-dependent interior Poisson
problems: application to tumor growth, J. Comput. Phys., 203 (2005), 191-220.
[13] S. Osher, J. A. Sethian,, Front propagating with curvature-dependent speed: algorithms based on
Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12-49.
[14] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surface, Springer, New york, NY,
2002, ISBN 0-387-95482-1.
[15] S. Osher, C. H. Shu,High order essentially non-oscillatory schemes for Hamilton-Jacobi equations,
SIAM J. Numer. Anal., 28 (1991), 907-922
[16] D. Peng, B. Merriman, S. Osher, H. K. Zhao, M. Kang, A PDE-based fast local level set method,
J. Comput. Phys., 155, 1999, 410-438.
[17] J. A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, New
york, NY, 1999, ISBN 0-521-64557-3.
[18] L. Zhang,C. A. Athale,T. S. Deisboeck, Development of a three-dimensional multiscale agent-
based tumor model: Simulating gene-protein interaction profiles, cell phenotypes and multicellular
patterns in brain cancer. , J. Theor. Biol., 244(1) 2007, 96-107
[19] X. Zheng, S. M. Wise, V. Cristini, Nonlinear simulation of tumor necrosis, neo-vascularization
and tissue invasion via an adaptive finite-element/level-set method 67 (2005),Bull. Math. Biol., pp.
211-259
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37441-
dc.description.abstract腫瘤生長的邊界演進是個不穩定的過程。在數值模擬中,介面的演進對於自身的曲率通常相當敏感,因而導致了不正確的計算與不穩定性。在這篇論文中,我們提出一個奠基在最小平方法上的邊界速度延拓方法,這個方法搭配上等位函數法(Level set method),可以成功模擬連續的腫瘤生長模型,並達到二階精確度。zh_TW
dc.description.abstractThe growth of
tumor boundary is an unstable evolution process. In numerical
simulation, the evolution of the boundary is technically very
sensitive to its curvature, and causes numerical instability and
incorrect calculation. In this paper, we propose a least-square
method for the extension of the boundary velocity. This extension,
together with the level set method, can compute a continuous model
for the tumor growth and achieve the second order accuracy.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:28:16Z (GMT). No. of bitstreams: 1
ntu-97-R95221008-1.pdf: 534653 bytes, checksum: 6bf6b154d202250d9809dbc90e522968 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsAcknowledgements pi
Abstract (in Chinese) pii
Abstract (in English) piii
Contents piv
Figures piv
Tables piv
1. Introduction p1
1.1. Derivation of Governing Equations p1
1.2. A Model of Nonnecrotic Tumor p4
1.3. Dimensionless Formulation p5
1.4. Introduction to Level Set Method p6
2. Numerical Methods p8
2.1. Main Loop p8
2.2. Notations p8
3. Solving Poisson Equation on Arbitrary Domain p9
3.1. Discretize Poisson equation over arbitrary domain p9
3.2. Finding intersection of interface and grid lines p11
3.3. Curvature Discretization and Interpolation p12
4. Level Set p14
4.1. Numerical Flux p14
4.2. Spatial Discretization p14
4.3. Temporal Discretization p16
4.4. Redistancing p16
4.5. Normal Vector p17
5. Treatment in Computing Velocity p18
5.1. Discretization of Prevelocity p18
5.2. Least Square Velocity Extension p19
5.3. Velocity Filtering p21
6. Numerical Results p23
6.1. Poisson Solver p23
6.2. Interface Propagator and Velocity Related 28
6.3. Overall Method p32
7. Conclusion p37
8. Appendix p38
References p39
dc.language.isoen
dc.subject界面問題zh_TW
dc.subject等位函數法zh_TW
dc.subject腫瘤生長zh_TW
dc.subject最小平方zh_TW
dc.subject速度場延拓zh_TW
dc.subjectleast squareen
dc.subjectinterface evolutionen
dc.subjectvelocity extensionen
dc.subjecttumor growthen
dc.subjectlevel seten
dc.title速度場最小平方延拓的界面演進法:應用在腫瘤生長模擬zh_TW
dc.titleInterface Evolution via a
Least-Square Velocity Extension: Application to Tumor Growth
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張建成(Chien-Cheng Chang),許文翰(Wen- Hann Sheu)
dc.subject.keyword腫瘤生長,等位函數法,最小平方,速度場延拓,界面問題,zh_TW
dc.subject.keywordtumor growth,level set,least square,velocity extension,interface evolution,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2008-07-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
522.12 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved