Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37440
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭
dc.contributor.authorYi-An Chenen
dc.contributor.author陳怡安zh_TW
dc.date.accessioned2021-06-13T15:28:14Z-
dc.date.available2014-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-10
dc.identifier.citation[1] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, Proceedings of the International Conference on Very Large Data Bases, 1994, pp. 487-499.
[2] R.C. Agarwal, C.C. Aggarwal, V. Prasad, A tree projection algorithm for generation of frequent item sets, Journal of Parallel and Distributed Computing, Vol. 61, No. 3, 2001, pp. 350-371.
[3] A.K. Akasapu, L. K. Sharma, G. Ramakrishna, Efficient trajectory pattern mining for both sparse and dense dataset, International Journal of Computer Applications, Vol. 9, No. 5, 2010, pp. 45-48.
[4] J. Ayres, J. Gehrke, T. Yiu, J. Flannick, Sequential pattern mining using a bitmap representation, Proceedings of the Eighth ACM International Conference on Knowledge Discovery and Data Mining, 2002, pp. 429-435.
[5] S. Brakatsoulas, D. Pfoser, N. Tryfona, Modeling, storing and mining moving object databases, Proceedings of Database Engineering and Applications Symposium, 2004, pp. 68-77.
[6] H. Cao, N. Mamoulis, D.W. Cheung, Mining frequent spatio-temporal sequential patterns, Proceedings of the 5th IEEE International Conference on Data Mining, 2005, pp. 82-89.
[7] H. Cao, N. Mamoulis, D.W. Cheung, Discovery of collocation episodes in spatiotemporal data, Proceedings of the Sixth IEEE International Conference on Data Mining, 2006, pp. 823-827.
[8] H. Cao, N. Mamoulis, D.W. Cheung, Discovery of periodic patterns in spatiotemporal sequence, IEEE Transactions on Knowledge and Data Engineering, Vol. 19, No. 4, 2007, pp. 453-467.
[9] A. Caragliu, C. D. Bo, P Nijkamp, Smart cities in Europe, Serie Research Memoranda, No. 48, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics, 2009.
[10] L. Chen and R. Ng, On the marriage of edit distance and Lp norms, Proceedings of the Thirtieth International Conference on Very Large Data Bases, 2002, pp. 792-803.
[11] L. Chen, M.T. Ozsu, V. Oria, Robust and fast similarity search for moving object trajectories, Proceedings of the ACM SIGMOD International Conference on Management of Data, 2005, pp. 491-502.
[12] T.S. Chen, S.C. Hsu, Mining frequent tree-like patterns in large datasets, Data and Knowledge Engineering, Vol. 62, No. 1, 2007, pp. 65-83.
[13] D. H. Douglas, T. K., Algorithms for the reduction of the number of points required to represent a line or its caricature, The International Journal for Geographic Information and Geovisualization, Vol. 10, No. 2, 1973, pp. 112-122.
[14] C.I. Ezeife, M. Monwar, SSM: A frequent sequential data stream patterns miner, Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, 2007, pp. 120-126.
[15] F. Giannotti, M. Nanni, F. Pinelli, D. Pedreschi, Trajectory pattern mining, Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007, pp. 330-339.
[16] G. Grahne, J. Zhu, Efficiently using prefix-trees in mining frequent itemsets, Proceedings of the IEEE ICDM Workshop in Frequent Itemset Mining Implementations, 2003, pp. 123-132.
[17] E. Gudes, E. Shimony N. Vanetik, Discovering frequent graph patterns using disjoint paths, IEEE Transactions on Knowledge and Data Engineering, Vol. 18, No. 11, 2006, pp. 1441-1456.
[18] R. Guting, M Schneider, Moving Object Databases, Morgan Kaufmann Publishers, San Francisco, CA, U.S.A , 2005.
[19] J.D. Chung, O. H. Paek, J.W. Lee, K.H. Ryu, Temporal moving pattern mining for location-based service, Proceedings of the 13th International Conference on Database and Expert Systems Applications, 2002, pp. 481-490.
[20] J. Gudmundsson, M.V. Kreveld, Computing longest duration flocks in trajectory data, Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems, 2006, pp. 35-42.
[21] J. Han, J. Pei, Y. Yin, R. Mao, Mining frequent patterns without candidate generation, Proceedings of the ACM SIGMOD international Conference on Management of Data, 2004, pp. 53-87.
[22] J. Han, M. Kamber, Data Mining: Concept and Techniques, second edition, Morgan Kaufmann Publishers, San Francisco, CA, U.S.A , 2006.
[23] J. Huan, W. Wang, J. Prins, Efficient mining of frequent subgraphs in the presence of isomorphism, Proceedings of the IEEE International Conference on Data Mining, 2003, pp. 549-552.
[24] S.Y. Hwang, Y.H. Liu, J.K. Chiu, E.P. Lim, Mining mobile group patterns: A trajectory-based approach, Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2005, pp. 713-718.
[25] A. Inokuchi, T. Washio, H. Motoda, An Apriori-based algorithm for mining frequent substructures from graph data, Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery, 2000, pp. 13-23.
[26] V.P. Janeja, V. Atluri, and N.R. Adam, Detecting anomalous geospatial trajectories through spatial characterization and spatio-semantic associations, Proceedings of the National Conference on Digital government research, 2004, pp. 1-10.
[27] H. Jeung, M.L. Yiu, X. Zhou, C.S. Jensen, H.T. Shen, Discovery of convoys in trajectory databases, Proceedings of International Conference on the Very Large Data Bases, 2008, pp. 1068-1080.
[28] R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, G. Agarwal, Discovery frequent topological structures from graph datasets, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2005, pp. 606-611.
[29] J. Kang and H.S. Yong, Mining spatio-temporal patterns in trajectory data, Journal of Information Processing Systems, Vol 4, No. 6, 2010, pp. 521-536.
[30] M. Kuramochi, G. Karypis, Frequent subgraph discovery, Proceedings of the IEEE International Conference on Data Mining, 2001, pp. 313-320.
[31] A.J.T. Lee, Y.A. Chen, W.C. Ip, Mining frequent trajectory patterns in spatial-temporal databases, Information Sciences, Vol. 179, No. 13, 2009, pp. 2218-2231.
[32] A.J.T. Lee and C.S. Wang, An efficient algorithm for mining frequent inter-transaction patterns, Information Sciences, Vol. 177, No. 17, 2007, pp. 3453-3476.
[33] A.J.T. Lee, H.W. Wu, T.Y. Lee, Y.H. Liu, K.T. Chen, Mining closed patterns in multi-sequence time-series databases, Data and Knowledge Engineering, Vol. 68, No. 10, 2009, pp. 1071-1090.
[34] J.G. Lee, J. Han, K.Y. Whang, Trajectory clustering: A partition-and-group framework, Proceedings of the ACM SIGMOD International Conference on Management of Data, 2007, pp. 593-604.
[35] J.G. Lee, J. Han, X. Li, and H. Gonzalez, TraClass: Trajectory classification using hierarchical region-based and trajectory-based clustering, Proceedings of International Conference on Very Large Data Bases, 2008, pp. 1081-1094.
[36] J.G. Lee, J. Han, X. Li, Trajectory outlier detection: A partition-and-detect framework, Proceedings of International Conference on Data Engineering, 2008, pp. 140-149.
[37] Z. Li, B. Ding, J. Han, R. Keys, Swarm: Mining relaxed temporal moving object clusters, Proceedings of International Conference on Very Large Data Base, 2010, pp. 723-734.
[38] X. Liu, H.A. Karimi, Location awareness through trajectory predictions, Landscape and Urban Planning, Vol. 20, No. 6, 2006, pp. 741-756.
[39] Y. Liu, L. Chen, J. Pei, Q. Chen, Y. Zhao, Mining frequent trajectory patterns for activity monitoring using radio frequency tag arrays, Proceedings of the Fifth IEEE International Conference on Pervasive Computing and Communications, 2007, pp. 37-46.
[40] A. Monreale, F. Pinelli, R. Trasarti, F. Giannotti, WhereNext: A location predictor on trajectory pattern mining, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009, pp. 637-646.
[41] K. Nicos, Intelligent cities: Innovation, knowledge systems and digital spaces, Spon Press, London, 2002.
[42] J.S. Park, M.S. Chen, P.S. Yu, An effective hash-based algorithm for mining association rules, Proceedings of ACM SIGMOD International Conference on Management of Data, 1995, pp. 175-186.
[43] G.K. Palshikar, M.S. Kale, M.M. Apte, Association rules mining using heavy itemsets, Data and Knowledge Engineering, Vol. 61, No. 1, 2007, pp. 93-113.
[44] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Efficient mining of association rules using closed itemset lattices, Information Systems, Vol. 24, No. 1, 1999, pp.25-46.
[45] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth, Proceedings of the 17th International Conference on Data Engineering, 2001, pp. 215-224.
[46] R.A. Pielke, The Hurricane, Routledge, London, U.K., 2010.
[47] N. Pelekis, I. Kopanakis, E. E. Kotsifakos, E. Frentzos, Y. Theodoridis, Clustering trajectories of moving objects in an uncertain world, Proceedings of the Ninth IEEE International Conference on Data Mining, 2009, pp. 417-427.
[48] J.A.M.R. Rocha, G. Oliveira, L.O. Alvares, V. Bogorny, V.C. Times, DB-SMoT: A direction-based spatio-temporal clustering method, Proceedings of International Conference on Intelligent Systems, 2010, pp.114-119.
[49] A. Savasere, E. Omiecinski, S. Navathe, An efficiant algorithms for mining association rules in large databases, Proceedings of the 21th International Conference of Very Large Data Bases, 1995, pp. 432-444.
[50] J.H. Schiller, A. Viosard, Location Based Services, Elsevier, San Francisco, CA, U.S.A., 2004.
[51] R. Srikant, R. Agrawal, Mining sequential patterns, Proceedings of the International Conference on Data Engineering, 1995, pp. 3-14.
[52] R. Srikant, R. Agrawal, Mining sequential patterns: Generalizations and performance improvements, Proceedings of the Fifth International Conference on Extending Database Technology, 1996, pp. 3-17.
[53] H. Toivonen, Sampling large databases for association rules, Proceedings of the 22th International Conference on Very Large Data Bases, 1996, pp. 134-145.
[54] I. Tsoukatos, D. Gunopulos, Efficient mining of spatiotemporal patterns, Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases, 2001, pp. 425-442.
[55] F. Urbano, F. Cagnacci, C. Calenge, H. Dettki, A. Cameron, M. Neteler, Wildlife tracking data management: A new vision, Philosophical Transactions B, Vol. 365, No. 1550, 2010, pp. 2177-2185.
[56] K. Viggo, On the Approximability of NP-complete optimization problems, PhD Dissertation, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, 1992.
[57] M. Vlachos, D. Gunopoulos, G. Kollios, Discovering similar multidimensional trajectories, Proceedings of the 18th International Conference on Data Engineering, 2002, pp. 673-684.
[58] J. Wisdom, J. Cimon, K. Johnson, O. Garton, W. Thomas, Spatial partitioning by mule deer and elk in relation to traffic, Proceedings of Conference on Transactions of the North American Wildlife and Natural Resources, 2004, pp. 509-530.
[59] X. Yan, J. Han, gSpan: Graph-based substructure pattern mining, Proceedings of the IEEE International Conference on Data Mining, 2002, pp. 721-724.
[60] H. Yao, H. Hamilton, Mining itemset utilities from transaction databases, Data and Knowledge Engineering, Vol. 59, No. 3, 2007, pp. 603-626.
[61] Y. Yang, H. Lin, Z.Guo, J. Jiang, A data mining approach for heavy rainfall forecasting based on satellite image sequence analysis, Computers and Geosciences, Vol. 33, No. 1, 2007, pp. 20-30.
[62] Z. Yin, L. Cao, J. Han, J. Luo, and T. Huang, Diversified trajectory pattern ranking in geo-tagged social media, Proceedings of SIAM Conference on Data Mining, 2011.
[63] J.J.C. Ying, E.H.C Lu, W.C Lee, T.C. Weng, and V.S. Tseng, Mining user similarity from semantic trajectories, Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks, 2010, pp. 19-26.
[64] U. Yun, J.J. Leggett, WSpan: Weighted sequential pattern mining in large sequence databases, Proceedings of International IEEE Conference on Intelligent Systems, 2006, pp. 512-517.
[65] M.J. Zaki, SPADE: An efficient algorithm for mining frequent sequences, Machine Learning, Vol. 42, No. 1, 2001, pp. 31-60.
[66] M.J. Zaki, K. Gouda, Fast vertical mining using diffsets, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 326-335.
[67] https://foursquare.com
[68] http://www.aoml.noaa.gov/hrd/tcfaq/G16.html
[69] http://www.fs.fed.us/pnw/starkey/
[70] http://www.mathopenref.com/similartriangles.html
[71] http://www.seaturtle.org/tracking/?project_id=470
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37440-
dc.description.abstract本論文提出三個探勘移動軌跡樣式的演算法: GBM、 FTM 及LTM。GBM 尋找由空間中連續的格點組成的樣式,而格點間的時間延遲則由時間間隔代表。FTM 探勘彈性移動軌跡樣式,其中樣式的格點不一定要連續,格點間的時間延遲則以區段代表。雖然以點序列來描述軌跡可以有效降低雜訊以及簡化整個探勘的程序;但亦可能產生過長的樣式,以致於需要耗費大量的時間進行探勘的工作。因此,LTM利用連續的線段代表物體的移動軌跡,它可以有效的降低記憶體的耗用、樣式的長度與頻繁樣式的數量,進而提升探勘的效率。
這三個方法皆採用深先演算法進行樣式探勘。GBM 利用樣式相鄰兩點鄰近的特性有效地降低搜尋空間。FTM則利用”頻繁邊”以避免不必要的樣式延伸。而LTM則使用兩個修剪策略, CU-Bound 與 FU-Bound 有效提升探勘的效率。
為了評估GBM、 FTM 和LTM 三個演算法,我們進行了大量的實驗。實驗結果顯示,GBM 的效率明顯優於Apriori-G與PrefixSpan-G。FTM 相較於Apriori-F 及PrefixSpan-F,亦在效能上亦有明顯的提升。LTM則能利用CU-Bound 及FU-Bound 兩種修剪策略明顯加速探勘的程序。
zh_TW
dc.description.abstractIn this dissertation, we propose three algorithms, GBM, FTM and LTM, for mining trajectory patterns. GBM focuses on finding frequent trajectory patterns consisting of consecutively adjacent points, where the time spent between two consecutive points in a frequent trajectory pattern is represented by a timespan. FTM mines frequent flexible trajectory patterns, where the consecutive points in a flexible pattern are not necessarily adjacent and the time spent between two consecutive points is denoted by a time interval. Although representing a trajectory pattern by a sequence of points is ideal to reduce the effect of noises and ease the mining process, these approaches may lead to generating long patterns and requiring a tremendous amount of mining time. Therefore, LTM models trajectories and patterns as consecutive line segments rather than discrete points so that the memory consumption, the lengths and number of frequent patterns can be effectively reduced.
All these three algorithms mine frequent patterns in a depth-first search (DFS) manner. GBM utilizes the adjacency property to effectively reduce the search space, while FTM employs frequent edges to prune unnecessary patterns. LTM uses two pruning strategies, CU-Bound and FU-Bound, to speed up the mining process.
Extensive experiments are conducted to evaluate the performance of GBM, FTM and LTM. The experimental results show that GBM significantly outperforms Apriori-G and PrefixSpan-G. FTM also gains considerable improvement in efficiency in comparison to Apriori-F and PrefixSpan-F. LTM effectively speeds up the mining process by using both CU-Bound and FU-Bound pruning strategies.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:28:14Z (GMT). No. of bitstreams: 1
ntu-100-D95725004-1.pdf: 2945393 bytes, checksum: 6058d654f3bfead6ae8387e423e9d4e8 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Contents i
List of Figures iii
List of Tables v
Chapter 1 Introduction 1
1.1 Motivations 3
1.2 Contributions 6
1.3 Dissertation layout 7
Chapter 2 Literature Survey 8
2.1 Itemset mining 8
2.2 Sequential pattern mining 9
2.3 Graph pattern mining 10
2.4 Trajectory pattern mining 11
2.5 Discussions 13
Chapter 3 Mining Frequent Trajectory Patterns 15
3.1 Preliminaries and Problem Definitions 15
3.2 The Proposed Method 17
3.3 An Example 26
3.4 Performance Evaluation 28
Chapter 4 Mining Frequent Flexible Trajectory Patterns 38
4.1 Preliminaries and Problem Definitions 38
4.2 The Proposed Method 40
4.3 An Example 49
4.4 Performance Evaluation 51
Chapter 5 Mining Line-based Trajectory Patterns 63
5.1 Preliminaries and Problem Definitions 63
5.2 The Proposed Method 68
5.3 An Example 84
5.4 Performance Evaluation 88
Chapter 6 Conclusions and Future Work 97
References 103
dc.language.isoen
dc.subject資料探勘zh_TW
dc.subject軌跡資料庫zh_TW
dc.subject線段軌跡樣式zh_TW
dc.subject彈性移動軌跡樣式zh_TW
dc.subject移動軌跡樣式zh_TW
dc.subjectflexible trajectory patternen
dc.subjectData miningen
dc.subjecttrajectory databaseen
dc.subjecttrajectory patternen
dc.subjectline-based trajectory patternen
dc.title探勘頻繁移動軌跡樣式zh_TW
dc.titleMining Frequent Trajectory Patternsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee翁頌舜,魏志平,苑守慈,陳建錦
dc.subject.keyword資料探勘,移動軌跡樣式,彈性移動軌跡樣式,線段軌跡樣式,軌跡資料庫,zh_TW
dc.subject.keywordData mining,trajectory pattern,flexible trajectory pattern,line-based trajectory pattern,trajectory database,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2011-08-11
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved