Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37416
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊榮輝(Rong-Huay Juang)
dc.contributor.authorYu-Ting Liuen
dc.contributor.author劉雨亭zh_TW
dc.date.accessioned2021-06-13T15:27:24Z-
dc.date.available2009-07-24
dc.date.copyright2008-07-24
dc.date.issued2008
dc.date.submitted2008-07-17
dc.identifier.citation莊榮輝 (1985) 水稻蔗糖合成脢之研究 博士論文 國立台灣大學 台北
陳翰民 (1997) 甘藷澱粉磷解脢構造與功能之研究 博士論文 國立台灣大學 台北
吳其真 (1998) 甘藷澱粉磷解脢之生化及免疫學研究 碩士論文 國立台灣大學 台北
陳安娜 (2001) 甘藷塊根澱粉磷解脢降解路徑的探討-與Proteasome的結合關係 碩士論文 國立台灣大學 台北
林怡岑 (2003) 甘藷塊根澱粉磷解脢與Proteasome之結合與降解關係 碩士論文 國立台灣大學 台北
林俊良 (2004) 甘藷塊根蛋白質磷酸酶之純化與性質分析
周宜旻 (2005) 甘藷塊根澱粉磷解脢之蛋白質交互作用 碩士論文 國立台灣大學 台北
曾光靖 (2005) 磷酸化修飾對甘藷塊根L型澱粉磷解脢之影響 碩士論文 國立台灣大學 台北
楊光華 (2005) 甘藷塊根澱粉磷解脢激脢之純化與性質分析 博士論文 國立台灣大學 台北
王維德 (2006) L78對L型澱粉磷解酶活性調控及催化機制之角色
王宏祥 (2007) 甘藷塊根澱粉磷解酶不需醣引子活性之分子機制與探討
張瓊尹 (2007) 甘藷澱粉磷解酶重組蛋白之表現與活性分析
Albrecht T, Greve B, Pusch K, Kossmann J,Buchner P, Wobus U, Steup M (1998) Homodimers and heterodimers of Pho1-type phosphorylase isoforms in Solanum tuberosum L. as revealed by sequence-spectific antibodies. Eur J Biochem 251:343-352
Baxter ED, Duffus CM (1973) Phosphorylase activity in relation to starch synthesis in developing Hordeum distivhum grain. Phytochemistry 12: 2321-2330
Bhatt AM, Knowler JT (1992) Tissue distribution and change in potato starch phosphorylase mRNA levels in wounded tissue and sprouting tubers. Eur J Biochem 204:971-975
Brisson N, Giroux H, Zollinger M, Camirand A, Simard C (1989) Maturation and subcellular compartmentation of potato starch phosphorylase. 1:559-566
Chen HM, Chang SC, Wu CC, Cuo TS, Wu JS, Juang RH (2002) Regulation of the catalytic behaviour of L-form starch phosphorylase from sweet potato roots by proteolysis. Physiol Plant 114: 506-515
Cori CF, Cori GT (1936) Mechanism of formation of hexosemonophosphate in muscle and isolation of a new phosphate ester. Proc Soc Exp Biol Med 34: 702-703
Da Mota RV, Cordenunsi BR, Do N, Jr., Purgatto E, Rosseto MR, Lajolo FM (2002) Activity and expression of banana starch phosphorylases during fruit development and ripening. Planta 216:325-333
Delvalle D, Dumez S, Wattebled F, Roldan I, Planchot V, Berbezy P, Colonna P, Vyas D, Chatterjee M, Ball S, Merida A, D'Hulst C (2005) Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. Plant J 43: 398-412
Duwenig E, Steup M, Willmitzer L, Kossmann J (1997) Antisense inhibition of cytosolic phosphorylase in potato plants (Solanum tuberosum L.) affects tuber sprouting and flower formation with only little impact on carbohydrate metabolism. Plant J 12: 323-333
Frydman RB, Cardini CE (1964) Biosynthesis of phytoglycogen from adenosine diphosphate D-glucose in sweet corn. Biochem Biophys Res Commun 14: 353-357
Fukui T (1983) Plant phosphorylase: structure and function. In T Akazawa, T Asahi, He Imaseki, eds, The New Fronties in plant Biochemistry, Ed Japan Scientific Societies Press Tokoyo, pp71-82
Fukui T, Shimomura S, Nakano K (1982) Potato and rabbit muscle phosphorylases: comparative studies on the structure, function and regulation of regulatory and nonregulatory enzymes. Mol Cell Biochem 42: 129-144
Gerbrandy SJ, Shankar V, Shivaram KN, Stegemann H (1975) Conversion of potato phosphorylase isozymes. Phytochemistry 14: 2331-2333
Green AA, Cori GT (1943) Crystalline muscle phosphorylase. I. Preparation, proterties and molecular weight. J Biol Chem 151: 21-30
Hanes CS (1940) The brankdown and synthesis of starch by enzyme system from pea seeds. Proc Roy Soc (London) B128: 421-500
Hanks SK, Quinn AM (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200: 38-62
Hardin SC, Huber SC (2004) Proteasome activity and the post-translational control of sucrose synthase stability in maize leaves. Plant physiol biochem 42: 197-208
Johnson LN, Barford D (1990) Glycogen phosphorylase. The structural basis of the allosteric response and comparison with other allosteric proteins. J Biol Chem 265: 2409-2412
Kamogawa A, Fukui T, Nikuni Z (1968) Potato a-glucan phosphorylase: crystakkization, amino acid composition and enzymatic reaction in the absenceof added primer. J Biochem 63: 361-369
Kerbs EG, Kent AB, Fischer EH (1958) The muscle phosphorylase b kinase reaction. J Biol Chem 231: 73-83
Kobmann J, Visser RGF, Muller-Rober B, Willmitzer L, Sonnewald U (1991) Cloning and expression analysis of a potato cDNA that encodes branching enzyme: evidence for
co-expression of starch biosynthetic genes. Mol Gen Genet 230: 39-44
Leloir LF, De Fekete MA, Cardini CE (1961) Starch and oligosaccharide synthesis from uridine diphosphate glucose. J Biol Chem 236: 636-641
Liu TT, Shannon JC (1981) A nonaqueous procedure for isolating starch granules with associated metabolites from maize (Zea mays L.) endosperm. Plant Physiol 67: 518-524
Lomako J, Lomako WM, Whelan WJ (1995) Glycogen metabolism in quail embryo muscle.
The role of the glycogenin primer and the intermediate proglycogen. Eur J Biochem 234: 343-349
Madsen NB, Withers SG (1986) Glycogen phosphorylase, in coenzymes and cofactors: Vitamin B6 catalysis, Dolphin D, Poulson R, Avramovic O, Eds. John Wiley & Sons, New Youk.
Mori H, Tanizawa K, Fukui T (1993) A chimeric alpha-glucan phosphorylase of plant type L and H isozymes. Functional role of 78-residue insertion in type L isozyme. J Biol Chem 268: 5574-5581
Mori H, Tanizawa K, Fukui T (1991) Potato tuber type H phosphorylase isozyme. Molecular cloning, nucleotide sequence, and expression of a full-length cDNA in Escherichia coli. J Biol Chem 266: 18446-18453
Muller-Rober B, Kobmann J, Hannah LC, Willmitzer L, Sonnewald U (1990) One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet 224: 136-146
Nakano K, Fukui T (1986) The complete amino acid sequence of potato alpha-glucan phosphorylase. J Biol Chem 261: 8230-8236
Nicole Schupp and Paul Ziegler (2004) The relation of starch phosphorylases to starch metabolism in wheat. Plant Cell Physiol. 45: 1471-1484
Ohdan T, Francisco PB, Jr., Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56: 3229-3244
Ozbun JL, Hawker JS, Greenberg E, Lammel C, Preiss J, Lee EYC (1973) Starch stnthetase, phosphorylase, ADP glucose pyrophosphorylase, and UDP glucose pyrophosphorylase in developing maize kernels. Plant Physiol 51: 1-5
Pitcher J, Smythe C, Campbcll DG, Cohen P (1987) Identification of the 38-kDa subunit of rabbit skeletal muscle glycogen synthase as glycogen. Eur J Biochem 169: 497-502
Pitcher J, Smythe C, Cohen P (1988)Glycogenin is the priming glucosyltransferase required for the ignition of glycogen biogenesis in rabbit skeletal muscle. Eur J Biochem 176: 391-395
Preiss J, Okita TW, Greenberg E (1980) Characterization of the spinach leaf phosphorylase. Plant Physiol 66:864-869
Preiss J, Greenberg E (1967) Biosynthesis of starch in Chlorella pyrenoidosa. I. Purification and properties of the adenosine diphosphoglucose: alpha-1, 4-glucan, alpha-4-glucosyl transferase from Chlorella. Arch Biochem Biophys 118: 702-708
Schneider EM, Becker JU, Volkmann D (1979) The role of phosphorylase in plant storage tissue studied by immunological methods. Hoppe Seylers Z Physiol Chem 960: 369-370̀
Schwarz A, Plerfederlcl FM, Nidetzky B (2005) catalytic mechanism of a-retaining glucosyl transfer by Corynebacterium callunase starch phosphorykase: the role of histidine-334
examined through kinetiv characterization of site-directed mutants. Biochem. J. 387: 437-445
Sheath RG, Hellebust JA, Sawa T (1979) Floridean starch metabolism of porphyridium purpureum (Rhodophyta). I. Changes during ageing of batch culture. Phycologia 18: 149-163
Shimomura S, Fukui T (1980) A Comparative study on a-glican phosphorylases from plant and animal: interrelationship between the polysaccharide and pyridoxal phosphate binding site by affinity electrophoresis. Biochemistry 19: 2287-2294
Sivak MN, Tandecarz JS, Cardini CE (1981a) Studies on potato tuber phosphorylase-catalyzed reaction in the absence of an exogenous acceptor, I. Characterization and properties of the enzyme. Arch Biochem Biophys 212: 525-536˸
Sivak MN, Tandecarz JS, Cardini CE (1981b) Studies on potato tuber phosphorylase-catalyzed reaction in the absence of an exogenous acceptor, II. Characterization of the reaction product. Arch Biochem Biophys 212: 525-536
Smythe C, Watt P, Cohen P (1990) Further studies on the role of glycogenin in glycogen biosynthesis. Eur J Biochem 189: 199-204
Smythe C, Cohen P (1991) the discovery of glycogenin and the priming mechanism for glycogen biogenesis. Eur J Biochem 200: 625-631
Sonnewald U, Basner A, Greve B, Steup M (1995) A second L-type isozyme of potato glucan phosphorylase: cloning, antisense inhibition and expression analysis. Plant Mol Biol 27: 567-576
Steup M (1988) Starch degradation. In J. Preiss, ed, The Biochemistry of Plants 14:255-296
Suda M, Watanabe T, Kobayashi M, Matsuda K (1987) Two types of phosphorylase from etiolated soybean cotyledons. J Biochem 102: 471-479
Tetlow IJ, Wait R, Lu Z, Akkasaeng R, Bowsher CG, Esposito S, Kosar-Hashemi B, Morell MK, Emes MJ (2004) Protein phosphorylation in amyloplasts regulates starch
branching enzyme activity and protein-protein interactions. Plant Cell 16: 694-708
Thoden JB, Holden HM (2007) The molecular architecture of glucose-1-phosphate uridylyltransferase. Protein Sci 16: 432-440
Zeeman SC, Thorneycroft D, Schupp N, Chapple A, Weck M, Dunstan H, Haldimann P, Bechtold N,Smith SM (2004) Plastidial alpha-glucan phosphorylase is not required for
starch degradation in Arabidopsis leaves but has a rol in the tolerance of abiotic stress. Plant Physiol 135:849-858˴˵
Zeeman SC, Thorneycroft D, Schupp N, Chapple A, Weck M, Dunstan H, Haldimann P, Bechtold N, Smith AM, Smith SM (2004) Plastidial {alpha}-Glucan Phosphorylase Is Not Required for Starch Degradation in Arabidopsis Leaves But Has a Role in the Tolerance of Abiotic Stress. Plant Physiol 135: 849-858̂˿˼̆̀ʳ˼́ʳ̊˻˸˴̇ʳˁʳˣ˿˴́̇ʳ˖˸˿˿ʳˣ˻̌̆˼̂˿ˁʳˇˈΚ˄ˇˊ˄ˀ˄ˇˋˇ
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37416-
dc.description.abstract本實驗室研究發現,甘藷塊根的澱粉磷解脢 (L-SP) 分子構造比肝糖磷解脢多出一段近百個胺基酸的片段 (L78),因而發現具有不需醣引子合成直鏈醣之活性 (primer independent activity, PI)。此催化機制可能經由L78P上的Lys與Glc-1-P結合,L78P扮演醣引子的角色以啟動澱粉合成反應;因為若L-SP失去L78P (L-SP*) 就不再有此種PI活性。此外,L78P降解與否,可能調控L-SP的作用方向。本論文的主題乃針對L-SP的PI催化機制,進一步確認L78P是否會透過Lys與Glc-1-P結合,以及L78P是否能救回上述L-SP*的PI活性。
本研究發現,L78P表現蛋白質在原態電泳出現數個色帶,推測應為表現所得的L78P構造不穩定,因而具有不同構形所造成;由於L78P分子並不大,可能缺乏完整的二級結構,因而無法在CD光譜得到明確的結果,而呈現random coil。加入磷酸酶CIAP去磷酸的實驗證實,L-SP以及L78P可降低磷酸釋放量;以Lys加入競爭發現,Lys能與L-SP競爭Glc-1-P,抑制L-SP合成直鏈醣而釋放磷酸的能力,顯示L-SP是利用L78P上的Lys與Glc-1-P結合。外加L78P到L-SP*中發現,其合成直鏈醣生成物 (磷酸以及澱粉) 含量都有上升,顯示L78P具有救回L-SP* PI活性的能力。另外,活化態的proteasome (proteasome deletion mutant) 確實可降解L-SP以及L78P,可能藉由泛素系統來調控L-SP的催化活性。
zh_TW
dc.description.abstractWhen compared with glycogen phosphorylase, it was found that starch phosphorylase (L-SP) from sweet potato roots has an insertion containing 78 amino acids (L78P) which might involve in the primer-independent (PI) activity of L-SP, since L-SP lost this PI activity totally if the L78P was removed by proteolysis (L-SP*). It was postulated that L-SP might bind with Glc-1-P at Lys residues on its L78P that might play the role of primer in starch synthesis. It was also demonstrated that L78P could control the direction of L-SP catalytic reactions by prtoein degradation. This study explored the structural features of L78P, and examined the possibility of the binding between L-SP and Glc-1-P. Besides, L78P was added to L-SP* for the rescue of its PI activity We found that L78P have four bands on native-PAGE which might be caused by its flexible conformation. From the circular dichroism (CD) spectroscopy analysis, L-SP was identified as random coil. When we added calf intestinal alkaline phosphatase to release the phosphate of Glc-1-P, L-SP and L78P could inhibit the reaction and decrease the phosphate leval. In addtion, Lys could compete with Glc-1-P in binding to L-SP; and the ability of L-SP to synthesize starch would be blocked by Lys. These results showed that L-SP can bind to Glc-1-P at the Lys residues of L78P. We also found that after adding L78P to L-SP*, the phosphate releasing leval increased and the starch synthesis began. In addition, it was found that proteasome (proteasome deletion mutant) could degrade L-SP and L78P; this observation indicated that L-SP activity might be regulated via ubiqutin-proteasome system.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:27:24Z (GMT). No. of bitstreams: 1
ntu-97-R95b47205-1.pdf: 3969723 bytes, checksum: 6986dcd8f2c4cf083dd69753e2e01b73 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目錄 I
中文摘要 I
Abstract II
第一章 緒論 1
1.1 澱粉磷解酶 1
1.2 澱粉磷解酶的分類方式 1
1.3 澱粉磷解酶的生理功能 2
1.3.1 磷解澱粉反應 3
1.3.2 合成澱粉反應 4
1.3.3 不需醣引子合成直鏈醣之活性primer-independent activity (PI activity) 4
1.4 澱粉磷解酶的調控機制 5
1.4.1 植物L型澱粉磷解酶與動物肝醣磷解酶的比較 5
1.4.2 L78P對L型澱粉磷解酶的影響 6
1.5 研究動機 7
第二章 材料與方法 14
2.1 材料 14
2.1.1 植物材料 14
2.1.2 菌株 14
2.2 一般分析法 14
2.2.1 Bradford蛋白質定量法 14
2.2.2 甘藷塊根澱粉磷解脢L-SP合成澱粉活性分析法 (添加醣引子) 16
2.2.3 甘藷塊根澱粉磷解脢L-SP合成澱粉活性分析法 (不添加醣引子) 17
2.2.4 磷酸酶活性分析法 19
2.3 電泳檢定法 19
2.3.1 原態膠體電泳 20
2.3.2 SDS膠體電泳 24
2.3.3 製備式電泳與電泳溶離 26
2.3.4 二維雙向電泳 (2-dimensional electrophoresis, 2DE) 28
2.3.5 2D PAGE (第一維 native-PAGE,第二維 SDS-PAGE) 電泳法 30
2.3.6 膠體染色法 30
2.3.7 膠片乾燥法及護貝 33
2.3.8 蛋白質電泳轉印法 35
2.3.9 磷酸酶活性染色 37
電泳系統 (Hoefer SE-250,平板式垂直迷你電泳槽) 37
電泳轉印槽 (Hoefer TE 52) 及轉印卡夾、海綿 37
2.3.10 酵素免疫染色法 38
2.4 管柱色層分析法 41
2.4.1 管柱色層層析法之基本操作 41
2.4.2 膠體前處理與保存 44
2.4.3 膠體過濾法 44
2.4.4 親和性層析法 45
2.5 大腸桿菌表現蛋白質L78之誘導與純化 46
第三章 結果與討論 49
3.1 L78P序列之表現及純化 49
3.2 L78P表現蛋白質之特性 56
3.2.1 L78P存在有不同構形? 59
3.2.2 L78P存在有不同修飾作用? 62
3.2.3. 結論 62
3.3 L-SP不需醣引子合成直鏈醣之活性 65
3.3.1. L78P以及L-SP可保護Glc-1-P的磷酸不被phosphatase釋放 65
3.3.2 外加Lysine可抑制L78P以及L-SP所造成的磷酸釋放 65
3.3.3 外加L78P表現蛋白質能否rescue L-SP*的PI activity 69
3.3.4 結論 70
3.4 L-SP以及L78P能被活化態的proteasome降解 74
3.5 未來展望 77
參考文獻 78
問答錄 84
dc.language.isozh-TW
dc.subject澱粉磷解&#37238zh_TW
dc.subjectL78en
dc.title甘藷塊根澱粉磷解酶L78之性質分析zh_TW
dc.titleThe Characterization of Starch Phosphorylase Insertion Peptide L78 from Sweet Potato Rootsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張世宗(Shih-Chung Chang),陳翰民(Han-Min Chen),吳建興(Jiann-Shing Wu)
dc.subject.keyword澱粉磷解&#37238,zh_TW
dc.subject.keywordL78,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2008-07-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept微生物與生化學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
3.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved