Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37415
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊任
dc.contributor.authorYuan-Ju Linen
dc.contributor.author林芫如zh_TW
dc.date.accessioned2021-06-13T15:27:22Z-
dc.date.available2013-07-23
dc.date.copyright2008-07-23
dc.date.issued2008
dc.date.submitted2008-07-17
dc.identifier.citation王三郎。1996。水產資源利用學。台北:高立圖書出版社。
王蘭欣,2002,紅麴菌Monascus pilosus產孢與其天然色素生產之研究。碩士論文。台中:朝陽科技大學應用化學系研究所。
吳許得。不同處理方法及來源所製得幾丁質的性質及其所誘導之幾丁質酶活性的比較。博士論文。基隆:國立臺灣海洋大學食品科學研究所。
吳仁永。1999。以酵素生產抑菌性幾丁寡醣及其在牛乳保鮮上的應用。碩士論文。基隆:國立臺灣海洋大學食品科學研究所。
吳冠政。1996。纖維素酶水解幾丁聚醣及其產物免疫活性評估。博士論文。國立基隆:臺灣海洋大學食品科學研究所。
邱奕志。1990。分級機並列式出料之設計。碩士論文。台北:台灣大學農業機械工程學研究所。
沈明來。1999。試驗設計學。台北:九州圖書文物有限公司。
林咨吟。2003。Bacillus subtilis W-118 所產幾丁質酶之研究。碩士論文。彰化
:大葉工學院食品工程研究所。
洪碧霙。蜡蚧輪枝菌幾丁聚醣酶之特性分析及應用研究。碩士論文。台中:朝陽科技大學應用化學研究所。
柯惠菁,2005,Meiothermus I40 菌株角蛋白酶產量最適化研究。碩士論文。高雄:國立高雄海洋科技大學水產食品研究所。
莊榮輝。1985。水稻蔗糖合成酶之研究。博士論文。台北:國立台灣大學農業化學研究所。
陳幸臣、許嘉珍。1997。以微生物分解蝦殼製取幾丁質與其部分去乙醯化。
中國農業化學會誌。35 :342-353。
趙家興。2006。Bacillius cereus TKU006 所生產幾丁質酶及蛋白酶之純化與定性
。碩士論文。台北:淡江大學生命科學研究所。
楊政國。1999。利用枯草菌進行蝦蟹殼去蛋白之研究。碩士論文。彰化:大葉工學院食品工程研究所。
蔡政家。1996。以化學法由蝦殼製備幾丁質及幾丁質及幾丁聚醣之處理條件與反
應動力之探討。碩士論文。基隆:國立台灣海洋大學水產食品科學研究所。
鄭閔魁。2000。生物除磷反應槽中可分離微生物菌相多樣性的探討。碩士論文。桃園:國立中央大學生命科學研究所。
Atlas, R. M., and Bartha. R. 1998. Microbial Ecology. Fundamentals and Applications. 4th, In: Microbial evolution and biodiversity. An imprint of Addison Wesley Longman, Inc.:27-54.
Alonso, I.G., Peniche, C., Nieto. 1983. Determination of the degree of acetylation of chitin and chitosan hy thermal analysis. J. Thermal Analysis, 28: 189-193.
Aiba, S. 1992. Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. Int J Biol Macromol. 14 (4): 225-8.
Aiba, S. and M., E. 1996. Preparation of N-acetyl-chitooligosaccharides from chitosan by enzymic hydrolysis followed by N-acetylation. , In 'Proceeding of the 7th international Conference on chitin, chitosan and Euchis'97', pp. 366-371. Domard, A., Roberts, G. A. F. and Varum, K. M. ed., Jacques and Publisher, Lyon, France.
Barker, S. A., Foster, A. B., Stacey, M. and Webber, M. 1985. Amino-sugars and compounds. Part Ⅳ.Isolation and properties of oligosaccharides obtained by controlled fragmentation of chitin. J. Chem. Sci., 80, 2218-2227.
Brine CJ. 1984. Introduction chitin: accomplishment and perspectives. In: Chitin,
Chitosan, and Related Enzymes. JP Zikakis ed., London:Academic Press. Inc.
Dill, K. A. 1990. Dominant forces in protein folding. Biochemistry 29(31): 7133-55.
Domard, A. and Cartier, N. 1989. Glucosamine oligomers: 1. Preparation and characterization. Int J Biol Macromol. 11 (5):297-302.
Dorr, H. G., Kuhnle, U.. 1984. Etomidate: a selective adrenocortical 11 beta-hydroxylase inhibitor.Klin Wochenschr. 62 (21):1011-3.
Fukada, Y.,. Kimura, K.. 1991. Effect of chitosan feeding on intestinal bile acid metabolism in rats. Lipids. 26 (5):395-9.
Genz, A., Knorr, W.. 1984. [Multiple recurrence in progressive paralysis]. Psychiatr Neurol Med Psychol (Leipz). 36 (12):710-3.
Growth-inhibitory effect of hexa-N-acetylchitohexaose against Meth A solid tumor. Chem. Pharm. Bull. 36:784-790.
Hirano S. 1989. Production and application of chitin and chitosan in Japan. p.37-42. In Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications. London:Elsevier Applied Science.
Hyun S. K. and Kenneth N. T. 2007. Characterization of a chitinolytic enzyme from Serratia sp. KCK isolated from kimchi juice. Appl Microbiol Biotechnol. 75: 1275–1283.
Ingraham, J. L. and F. C. Neidhardt. 1983. Growth of the bacterial cell. Sunderland, Massachusetts, Sinauer:12-107.
Kafetzopoulos, D., Martinou, A.. 1993. Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proc Natl Acad Sci U S A. 90 (7):2564-8.
Kendra, D. F. and Hadwiger, C. A. 1984. Chaeacterization of the smallest chitosan oligomer that is maximally antifugal to Fusarium solani and elicits pisatin formation in pisum astivum. Exp Mycol., 8:276-284.
Kim, H. S., Timmis, K. N.. 2007. Characterization of a chitinolytic enzyme from Serratia sp. KCK isolated from kimchi juice. Appl Microbiol Biotechnol. 75 (6):1275-83.
Knorr D. 1984. Used of chitinous polymers in food –A challenge for food research and development. Food Technol., 1:85-97.
Koga D, Sueshige N, Orikono K, Utsumi T, Tanaka S,Yamada Yand Ide A. 1988. Efficiency of chitinolytic enzyme in the formation of trico-loma matsutake protoplasts. Agricultural and Biological Chemistry. 52:2091-2094.
Koselowski, G., Kuhne, G. E.l. 1984. Electronic data processing-assisted epicrisis in clinico-psychiatric documentation of findings. Psychiatr Neurol Med Psychol (Leipz.) 36 (7):414-9.
Lillo, A., F. P. Ashley,. 2006. Novel subgingival bacterial phylotypes detected using multiple universal polymerase chain reaction primer sets. Oral Microbiol Immunol. 21 (1):61-8.
Lee, Y. S., Park, I. H.. 2007. Cloning, purification, and characterization of chitinase from Bacillus sp. DAU101. Bioresour Technol. 98 (14):2734-41.
Nishimura, K., Nishimura, S.. 1987. Effect of multiporous microspheres derived from chitin and partially deacetylated chitin on the activation of mouse peritoneal macrophages. Vaccine. 5 (2):136-40.
Nawani, N. N., Kapadnis B. P.. 2001. One-step purification of chitinase from Serratia marcescens NK1, a soil isolate. J Appl Microbiol. 90 (5):803-8.
Nawani N.N. and Kapadnis B.P. 2005.Optimization of chitinase production using statistics based experimental designs. Process Biochemistry. 40:651–660.
Ohtakara, A. and Izume, M. 1987. Preparation of D-Glucosanmine oligosaccharide by enzymatic hydrolysis of chitosan. Agric. Biol. Chem. 51:1189-1191.
Rane, K. D. and D. G. Hoover. 1993. Production of chitosan by fungi. Food Biotech. 7:11-13.
Reguera G and SB Leschine. 2001. Chitin degradation by cellulolytic anaerobes
and facultative aerobes from soils and sediments. FEMS Microbiol. Lett. 204:367-374.
Robert WK , Selitrennikoff . 1988. Plant and bacterial chitinase differ in antifungal activity. Journal of Biologicalv Chemistry. 134:169-176.
Roby, K., Gadella, A. and Domszy, J. G. 1987. Chitin oligosacchariades as
elicitor of chitinase activity in melon plants. Biochem. Biophys.Commum. 143: 885-890.
Shimahara K, K Ohkouchi, and M Ikeda. 1982. A new isolation method of crustacean chitin using proteolytic bacterium Pseudomonas maltophilia. In: Chitin and Chitosan. (S Hirano and S Tokura. ed.), 10-14. The Japanese Society of Chitin and Chitosan.
Shimahara K, Y Takiguchi, T Kobayashi, K Uda, and T Sannan. 1989. Screning of Mucoraceae strainsuitable for chitosan production. In : Chitin and Chitosan: Sources Chemistry, Biochemistry Physical Properties and Application. 171-177. London:Elsevier Applied Science.
Stanley W.L., Watters G.G., Chan B.G., Mercer JM. 1975. Lactose and other enzyme bound to chitin with glutaraldehyde. Biotechnology and Bioengineering. 17:315-326.
Suzuki, K., Tokoro, A., Okawa, Y., Suzuki, S. and Suzuki, M. 1986. Effect of N-acetyl-chitooligosaccharides on activation of phagocytes. Microbiol. Immunol. 30:777-787.
Tanaka, Y., Tanioka, S. Tanaka, M., Tanigawa, T., Kitamura, Y., Minami, S., Okamoto, Y., Miyashita, M., and Nanno, M. 1997. Effects of chitin and chitosan particles on BALB/c mice by oral and parenteral administration. Biomaterials 18:591-595.
Teng, W. L., Khor, E.. 2001. Concurrent production of chitin from shrimp shells and fungi. Carbohydr Res. 332 (3):305-16.
Tokoro, A., Tatewaki, N.. 1988. Growth-inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose against Meth-A solid tumor. Chem Pharm Bull (Tokyo). 36 (2):784-90.
Wang, S. L., Lin, T. Y.. 2006. Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydr Res. 341 (15): 2507-15.
Woese, C. R. (1987). Bacterial evolution. Microbiol Rev. 51 (2):221-71.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37415-
dc.description.abstract目前已知N-乙醯幾丁寡糖 (聚合度4-7)具有特殊生理活性如能提高免疫力及抑制腫瘤生長,故本研究目的擬由富含幾丁質環境中篩選出可以分解幾丁質產生N-乙醯幾丁寡醣之微生物。在初期篩選中,以粗酵素水解膠態幾丁質並以高效能液相層析 (HPLC)確認其產物,挑選出一株產物中有較長鏈N-乙醯幾丁寡糖之微生物,經鑑定命名為Serratia marcescens NTU-17。以反應區面法 (response surface methodology, RSM)之中心混成設計 (central composite design, CCD)得到最佳酵素生產的培養基條件為0.4 g/l colloidal chitin、1.6 g/l casein於30。C及pH 7.5下培養;以此條件下震盪培養18小時後可生產出最高的酵素活性。粗酵素液經35-70%硫酸銨沉澱後,以Sephacryl 200進行膠體過濾,接著以DEAE-Sephacel離子交換層析進行純化,最後分別得到二種純化之幾丁質酶,經SDS-PAGE分析其分子量,分別為53 kDa (chitinase 1)及39 kDa (chitinase 2),並以活性染色方式確認此2種蛋白質皆具有幾丁質酶活性,純化之幾丁質酶活性大約為0.3 U/ml且比活性增加2.5倍,而酵素回收率則約為12%。在酵素特性部分,chitinase 1在pH 3反應溫度為50℃時有最佳的活性,而chitinase 2在pH 3-12的範圍中皆具有幾丁質酶活性。zh_TW
dc.description.abstractAbstract
N-acetylchitooligosaccharides (degree of polymerization 4-6) have specific biological activities such as antitumor activity and immuno-enhancing effects. In this study, we aimed to isolate environmental microorganisms which could produce enzymes to hydrolyze chitin into N-acetylchitooligosaccharides. At the initial stage, we hydrolyzed colloidal chitin with crude microbial enzymes and analyzed the products by HPLC. From this screening, we found that the crude enzyme from one bacterial isolate could hydrolyze chitin and produce N-acetylchitooligosaccharides. The bacterial strain was identified by 16S rRNA sequencing and phylogenetic analysis to belong Serratia marcescens and was named S. marcescens NTU-17. We used central composite design (CCD) of response surface methodology (RSM) to obtain the optimal culture condition for chitinase production: 0.4 g/l colloidal chitin, 1.6 g/l casein, 30。C and pH 7.5; the highest chitinase activity was produced at 18 hours after inoculation. The crude enzyme from culture broth of S. marcescens NTU-17 was subjected to successive steps of purification. After ammonium sulfate fractionation (35-70%), gel filtration-Sephacryl 200 chromatography, and DEAE-Sephacel column chromatography, two species of chitinase were purified and the molecular weights were determined by SDS-PAGE to be 53 kDa (chitinase 1) and 39 kDa (chitinase 2). The chitinase activity of chitinase 1 and 2 were also verified by an in-gel chitinase activity assay. After purification, the specific activity of chitinase was increased by 2.5 fold and the yield was 12%. Chitinase 1 exhibited the optimal activity at pH 3 and 50℃, and chitinase 2 showed the optimal activity at 30℃ and similar activities at pH 3-12.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:27:22Z (GMT). No. of bitstreams: 1
ntu-97-R95631003-1.pdf: 1225618 bytes, checksum: 5dec15edef9da6be9de3d6f28ca390d8 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目錄
目錄 i
圖目錄 iii
表目錄 v
誌謝 vi
中文摘要 1
Abstract 2
前言 4
第一章、文獻探討 5
(1)幾丁質 5
1.1幾丁質之結構 5
1.2幾丁質之製備 5
1.3幾丁質之應用 6
(2)幾丁聚醣 6
2.1幾丁聚醣之結構 6
2.2幾丁聚醣之應用 7
2.3幾丁聚醣之製備 7
(3) N-乙醯幾丁寡醣 (N-acetyl chitooligosaccharides, (GlcNAc)n)與幾丁寡醣 (chito-oligosaccharides) 8
3.1 N-乙醯幾丁寡醣與幾丁寡醣之結構 8
3.2 N-乙醯幾丁寡醣與幾丁寡醣之製備 8
3.3 N-乙醯幾丁寡醣與幾丁寡醣之應用 9
(4)不同的幾丁質水解酵素 9
4.1幾丁質酶 (chitinase;EC 3.2.1.14) 9
(5)反應曲面法 (Response surface methodology,RSM) 11
5.1反應區面法實際應用之優點 12
5.2常用實驗設計類型及實施步驟 13
(6)微生物菌種鑑定 15
6.1 核醣體核醣核酸 (ribosomal RNA, rRNA) 15
第二章、材料與方法 16
(1)實驗材料 16
2.1菌株 16
2.2化學材料 16
2.4儀器 17
(2)實驗方法 17
2.5菌種保存及菌株培養 17
2.6酵素活性測定方法 21
2.7酵素最適培養條件探討 22
2.8幾丁質酶之純化 23
2.9幾丁質酶酵素之特性分析 26
2.10產物分析 27
第三章、結果與討論 30
(一)菌種篩選 30
(二) Serratia marcescens NTU-17生產幾丁質酶之最佳培養條件探討 35
(三)酵素純化 45
(四)產物確認 57
第四章、結論 59
第五章、參考文獻 60
圖目錄
圖1- 1反應曲面法Response surface methodology 12
圖2- 1 HPLC樣品製備流程圖 27
圖2- 2實驗流程圖 29
圖3-1初步篩選18株菌株幾丁質酶活性 32
圖3-2以HPLC檢測No.17粗酵素水解colloidal chitin之產物 32
圖3-3 Serratia marcescens NTU-17其生長曲線及酵素曲線。 33
圖3-4以HPLC分析甲醇和丙酮分離不同聚合度之N-乙醯幾丁寡醣 33
圖3-5 16S rDNA phylogenetic tree 34
圖3-6 1%不同氮源對幾丁質酶的影響 37
圖3-7 ANOVA 二階層軟體設計方程式 38
圖3-8利用CCD設計最適培養基之RSM不同條件之活性曲線圖 42
圖3-9利用CCD設計最適培養基之RSM不同條件之活性曲線圖 42
圖3-10利用CCD設計最適培養基之RSM不同條件之活性曲線圖 43
圖3-11利用CCD設計最適培養基之RSM不同條件之活性曲線圖 43
圖3-12利用CCD設計最適培養基之RSM不同條件之活性曲線圖 44
圖3-13利用CCD設計最適培養基之RSM不同條件之活性曲線圖 44
圖3-14以不同濃度硫酸銨劃分幾丁質酶活性及幾丁二醣酶活性 48
圖3-15不同濃度硫酸銨初步劃分之幾丁質酶水解產物分析 48
圖3-16不同濃度硫酸銨初步劃分之幾丁質酶水解產物分析 49
圖3-17 35%-70%之硫酸銨劃分蛋白質以sephacryl 200膠體過濾層析 49
圖3-18膠體過濾後收集不同fractions以12.5% SDS-PAGE分析 50
圖3-19膠體過濾後幾丁質酶之活性染色 50
圖3-20以HPLC檢測膠過濾後幾丁質酶水解colloidal chitin產物 51
圖3-21 20 mM pH7 phosphate buffer進行DEAE離子交換層析 51
圖3-22 20 mM pH8.6 Tris-HCl buffer進行DEAE離子交換層析 52
圖3-23經兩次DEAE離子交換層析純化所得幾丁質酶之SDS-PAGE分析 52
圖3-24以Sephacryl 100二次膠體過濾膠體過濾分析 53
圖3-25取圖3-24膠體過濾分析後收集不同fractions以12.5% SDS-PAGE分析 53
圖3-26 Chitinase 1及Chitinase 2其活性之最適反應溫度 54
圖3-27 Chitinase 1 (53 kDa)活性之熱穩定度 54
圖3-28 Chitinase 2 (39 kDa)活性之熱穩定性 55
圖3-29 Chitinase 1及Chitinase 2其活性之最適反應pH 值 55
圖3-30 Chitinase 1及Chitinase 2其活性之最適pH穩定性 56
圖3-31以HPLC分析純化後chitinase 1水解colloidal chitin產物 58
圖3-32以HPLC分析純化後chitinase 2水解colloidal chitin產物 58
表目錄
表2. 1 PCR流程表 20
表3.1 two level實驗設計表 37
表3.2 ANOVA 二階層軟體設計表 38
表3.3 RSM軟體5 level中心混成設計 39
表3.4 以RSM軟體 5 levels、4 factors CCD實驗設計 40
表3.5 ANOVA 五階層軟體設計表 41
表3.6 酵素純化表 56
dc.language.isozh-TW
dc.subject幾丁質zh_TW
dc.subjectchitinen
dc.titleSerratia marcescens NTU-17所產生幾丁質分解酵素
之研究
zh_TW
dc.titleStudy on Chitinolytic Enzymes from Serratia marcescens NTU-17en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor盧福明
dc.contributor.oralexamcommittee李允中,楊景雍
dc.subject.keyword幾丁質,zh_TW
dc.subject.keywordchitin,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2008-07-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved