請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37412完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王昭男(Chao-Nan Wang) | |
| dc.contributor.author | Shu-Ying Yuan | en |
| dc.contributor.author | 袁淑嫈 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:27:16Z | - |
| dc.date.available | 2011-07-23 | |
| dc.date.copyright | 2008-07-23 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-17 | |
| dc.identifier.citation | [1] Kyoto Protocol to the United Nations Framework Convention on Climate Change, 1997.
[2] 陳正和,“風力發電之應用和效益”,台電月刊527期,2006年11月。 [3] 江懷德、呂威賢、羅聖宗、顏志偉,“我國離岸式風力發電場發展之可行性評估”,太陽能及新能源學刊,第八卷、第二期,2003年12月。 [4] T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook, John Wiley & Sons, New York, 2001. [5] 江易儒,“風力機葉片數目對性能的影響”,金屬中心,金屬產品研發組,2007年4月。 [6] 中央氣象局,http://www.cwb.gov.tw/。 [7] M. J. Lighthill,“On Sound Generated Aerodynamically. I. General Theory”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 211, No. 1107., pp 564-587, 1952. [8] I. Proudman,“The generation of noise by isotropic turbulence” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 214, pp 119-132, 1952. [9] N. Curle , “The Influence of Solid Boundaries upon Aerodynamic Sound”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 231, No. 1187., pp. 505-514, Sep. 20, 1955. [10] J.E. Ffowcs Williams and D.L. Hawkings, “Sound Generation by Turbulence and Surfaces in Arbitrary Motion”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 264, No.1151, pp.321-342, 1969. [11] A. Powell, “ Theory of vortex sound”, Journal of the Acoustical Society of America 361, pp. 177–195, 1964. [12] Kenji Ono, Ryutaro Himeno, Tatsuya Fukushima“Prediction of wind noise radiated from passenger cars and its evaluation based on auralization’ Journal of Wind Engineering and Industrial Aerodynamics”, Vol.81, pp.403-419, 1999. [13] C. Montavon, I. Jones, P., Szepessy, S., Henriksson, R., el-Hachemi, Z., Dequand, S., Piccirillo, M., Tournour, and F., Tremblay, “Noise propagation. from a cylinder in a cross flow: comparison of SPL from measurements and from a CAA method based on a generalized acoustic analogy’’, IMA Conference on Computational Aeroacoustics, pp.1-14, 2002. [14] A. Pradera, G. Keith, F. Jacobsen, N. Gil-Negrete and A. Rivas,“A numerical study of fluid flow past a circular cylinder at Re=3900 and a practical approach to noise prediction”ICSV 14 (14th International Congress on Sound and Vibration), 9-12 July 2007. [15] FLUENT Version 6.3 User’s Guide. [16] N. G. Shah. A New Method of Computation of Radiant Heat Transfer in Combustion Chambers. PhD thesis, Imperial College of Science and Technology, London, England, 1979. [17] 白明憲,工程聲學,全華科技圖書股份有限公司,台北,2005。 [18] C. Arakawa, O. Fleig, M. Iida and M. Shimooka, Numerical approach for noise reduction of wind turbine blade tip with Earth Simulator, Journal of the Earth Simulator, 2, 11-13, 2005. [19] C. Arakawa and M. Iida, Simulations of wind turbine, 日本流体力學会數值流体力學部門誌, 10(4), 293- 299, 2002. ( In Japanese) [20] O. Fleig, M. Iida, C. Arakawa, Flow and Noise simulation of wind turbine balde MELIII by large-eddy simulation, 第17回數值流体力學シンポジウム, A5-2, 2003. [21] C. Arakawa, H. Kawamura, T. Ishihara and Y. Kaneda, Direct numerical simulations of fundamental turbulent flows with large grid numbers in the world and its application of modeling for engineering turbulent flows, Annual report of the Earth simulator center, chapter 4 Epoch-Making simulation, 215-218, Aprial 2004 - March 2005. [22] 蔡國隆、王光賢、涂聰賢,聲學原理與噪音量測控制,全華科技圖書股份有限公司,台北,2005。 [23] S. Oerlemans,“Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines”, NREL/SR-500-35339, August 2004. [24] Ira H. Abbott, A. E. Von Doenhoff,“Theory of Wing Sections: Including a Summary of Airfoil Data”, McGraw-Hill, New York, 1959. [25] M. S. Selig and B. D. McGranahan ,“Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines”, NREL/SR-500-34515, October 2004. [26] J. L. Tangler,“The Nebulous Art of Using Wind-Tunnel Airfoil Data for Predicting Rotor Performance”, NREL/CP-500-31243, January, 2002. [27] R. E. Sheldahl and P. C. Klimas, Characteristics of Seven Airfoil Sections Through 180 Degrees Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines, SAND80-2114 Sandia National Laboratories, 1981. [28] D. M. Somers,“The S822 and S823 Airfoils”, NREL/SR-500-36342, January 2005. [29] 黃俊成與林恆,”風力發電機翼剖面氣動力特性計算”,第十二屆全國計算流體力學學術研討會,2005年8月。 [30] 林恆與黃俊成,”風力發電機翼剖面過度流分析”,第十三屆全國計算流體力學學術研討會,2006年8月。 [31] GAMBIT Version 2.3.16 User’s Guide. [32] Fluent Inc. “Modeling Turbulence”, September 29, 2006. [33] A. R. Mitchell and D. F. Griffiths, The finite difference method in partial differential equations, Wiley, New York, 1980. [34] O.C. Zienkiewicz, R.L. Taylor, The finite element method, Butterworth-Heinemann, Boston, 2000. [35] B. E. Launder, D.B. Spalding,“The Numerical Computation of Turbulent Flows”, Computer Methods in Applied Mechanics and Engineering, Vol.3, pp 269-289, 1974. [36] D. Choudhury. Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Inc. Technical Memorandum TM-107, 1993. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37412 | - |
| dc.description.abstract | 本文主要在探討氣流流經二維風車翼面時,氣流場壓力變動所產生的噪音,文中選取六種風車葉片類型進行分析,探討不同的翼型、入流速度、入流角度等因素對噪音產生之影響。文中將計算域以C 型結構劃分網格,同時符合壁函數之設計範圍。本文採用有限體積法來離散控制方程式,離散後的代數方程式以分離求解法,逐一的求解每ㄧ個方程式,利用疊代方式求解。控制方程式係採用雷諾
平均方程式(RANS),再配合k-e紊流模式來計算雷諾應力分佈,求解紊流流場,驗證其二維翼型升力係數、阻力係數及壓力係數,藉此可得到正確的紊流場資訊,方能據以分析此紊流場所產生之噪音量。為累積分析經驗,首先以簡單之對稱翼型NACA0012 作為分析對象,藉此確認較佳的網格劃分方式與數量,爾後再針對 其他翼型(NACA0015、DU95-W-180、NACA64(3)-218、S822與S809)進行動力係數的分析,同時與實驗數據比對,以驗證分析的正確性。結果顯示,升力係數相當一致,阻力係數方面本文之分析結果略為偏大,整體而言尚在可接受的範圍,之後,即以此為基礎,進行紊流噪音分析。在聲場分析中,文中採用寬頻帶噪音模式(Broadband Noise Source Model, BNS)進行計算,並以Lighthill 之聲學類比為基礎,使用Curle 方程式進行表面聲功率位準(Surface Acoustic Power level,SAPL)的預測,分析二維風車葉片在不同風速與入流攻角的情形下,紊流在翼型表面所產生的噪音量,藉由表面聲功率位準歸納其風機性能佳且噪音值小之風機外型,以期能減少風力發電機對環境之衝擊,提升風力發電之產能。 | zh_TW |
| dc.description.abstract | The purpose of this research is to investigate the two dimensional wind turbine blade noise which is induced by the pressure variation in the turbulent flow. In this study, six airfoils are chosen to investigate. The influences of type of airfoil, flow velocity and angle of attack on the turbulence noise generation have been discussed. Firstly, the computational domain is meshed by the C type structure and the mesh satisfies the requirement of wall function that is used near the boundary surface. Reynolds averaged Navier-Stokes (RANS) equations are used to describe the turbulent flow field and the Reynolds stresses are calculated through the k-e model. The SIMPLE algorithm with finite volume based scheme was used in this numerical analysis. Then the flow field around a two dimensional airfoil is analyzed and the lift, drag and pressure coefficients are used as the parameters to verify the accuracy of the present numerical approach. The symmetric airfoil NACA0012 is analyzed firstly in order to test the mesh distribution and required mesh number that can provide enough accuracy. Then the other five airfoils, NACA0015, DU95-W-180, NACA64(3)-218, S822 and S809 are also analyzed. The agreement between the numerical results of aerodynamic coefficients and the experimental measurements are good except for the
drag coefficient has larger discrepancy. Then the turbulent flow noise is analyzed based on this flow field analysis. For the sound field analysis, the turbulence induced sound power is evaluated by Broadband Noise Source (BNS) model, namely Curle’s boundary layer model for dipole source. This model is an extension of the Lighthill’s general theory of aerodynamic sound, so as to incorporate the influence of solid boundaries. This equation requires the data of the flow field as input. In this work, the Curle’s formulation built in Fluent is adopted to analyze the surface acoustic power level (SAPL) of flow pass through an airfoil. Hoping that the lower noise airfoils can be selected and the impact of the wind turbine on the environment can be reduced. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:27:16Z (GMT). No. of bitstreams: 1 ntu-97-R95525003-1.pdf: 7508262 bytes, checksum: 1c8e099632bc47e33b7d7a47d18a97c6 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II 英文摘要 III 術語簡稱對照表 IV 目錄 V 圖目錄 VIII 表目錄 XII 符號說明 XIII 第一章 緒論 1.1 研究背景與目的……………………………………………… 1 1.2 文獻回顧……………………………………………………… 5 1.3 論文架構……………………………………………………… 7 第二章 基本理論 2.1基本假設……………………………………………………… 8 2.2統御方程式…………………………………………………… 8 2.2.1 連續方程式……………………………………………… 8 2.2.2動量方程式………………………………………………… 9 2.2.3紊流方程式………………………………………………… 10 2.3紊流模式……………………………………………………… 12 2.4氣動聲學……………………………………………………… 14 第三章 流體動力係數分析 3.1計算方法說明………………………………………………… 18 3.2網格分佈……………………………………………………… 19 3.3邊界條件設定………………………………………………… 20 3.4數值方法……………………………………………………… 23 3.4.1有限體積法………………………………………………… 23 3.4.2求解流程…………………………………………………… 25 3.4.3壓力修正方程式…………………………………………… 25 3.5紊流模式與網格劃分測試…………………………………… 26 3.6分析與討論…………………………………………………… 28 3.6.1對稱翼型氣動力係數……………………………………… 28 3.6.2雙凸翼型氣動力係數……………………………………… 31 3.6.3 S系列翼型氣動力係數…………………………………… 32 3.6.4 性能分析…………………………………………………… 33 第四章 紊流聲場數值分析 4.1對稱翼型之噪音場…………………………………………… 72 4.2雙凸翼型之噪音場…………………………………………… 74 4.3 S系列翼型之噪音場………………………………………… 76 4.4討論…………………………………………………………… 77 第五章 結論與展望 5.1結論…………………………………………………………… 94 5.2展望…………………………………………………………… 95 參考文獻 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氣動噪音 | zh_TW |
| dc.subject | 風車葉片 | zh_TW |
| dc.subject | 二維翼型 | zh_TW |
| dc.subject | 紊流 | zh_TW |
| dc.subject | 寬頻帶噪音模式 | zh_TW |
| dc.subject | blade | en |
| dc.subject | two dimensional airfoil | en |
| dc.subject | turbulence | en |
| dc.subject | aerodynamic sound | en |
| dc.subject | BNS | en |
| dc.title | 二維風車葉片之氣動力噪音分析 | zh_TW |
| dc.title | Aeroacoustics Analysis of the 2D Wind Blade | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝傳璋(Chuan-Cheung Tse),郭真祥(Jen-Shiang Kouh),趙茂吉(Maw-jyi Chao) | |
| dc.subject.keyword | 風車葉片,二維翼型,紊流,氣動噪音,寬頻帶噪音模式, | zh_TW |
| dc.subject.keyword | blade,two dimensional airfoil,turbulence,aerodynamic sound,BNS, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 7.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
